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We present simulations of two interacting moving cylinders immersed in a two-
dimensional incompressible, viscous flow. Simulations are performed by coupling
a wavelet-adapted, remeshed vortex method with the Brinkman penalization and
projection approach. This method is validated on benchmark problems and applied
to simulations of a master-slave pair of cylinders. The master cylinder’s motion is
imposed and the slave cylinder is let free to respond to the flow. We study the relative
role of viscous and inertia effects in the cylinders interactions and identify related
sharp transitions in the response of the slave. The observed differences in the behavior
of cylinders with respect to corresponding potential flow simulations are discussed.
In addition, it is observed that in certain situations the finite size of the slave cylinders
enhances the transport so that the cylinders are advected more effectively than passive
tracers placed, respectively, at the same starting position. C© 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4704195]

I. INTRODUCTION

Flows generated by neighboring, moving objects affect their mutual behavior, leading to com-
plex collective phenomena emerging from flow-structure interactions. Flow mediated interactions
are intrinsic to natural phenomena such as fish schooling,1, 2 dolphin drafting,3 collective trans-
port of suspensions of swimming micro-organisms,4–6 sedimentation of cloud particles,7, 8 cluster
formation,9 collision avoidance,10 and egg fertilization.11

The flow physics of these complex interactions has been the subject of experimental and
computational investigations that aim to unveil governing mechanisms,1–6 and may be in turn
exploited for engineering applications ranging from collaborating underwater devices to swarms of
unmanned air vehicles and energy harvesting devices.12, 13

Fluid mediated interactions between moving objects have been investigated in the inertia-less
limit (Re = 0) via Stokesian dynamics,4, 5, 14–16 and for small, but finite, Reynolds number (Re
� 1) through Oseen equations.17 Hydrodynamic interactions in inviscid fluids (Re = ∞) have been
modeled by potential flow theory for bodies in the presence of free surfaces or bodies immersed
in fluids.18, 19 There has been relatively little effort in characterizing hydrodynamic coupling on the
motion of immersed objects for finite, moderate Reynolds numbers (1 ≤ Re ≤ 104).10, 20, 21 We note
also the work of Eldredge in developing a formulation that aims to bridge viscous and inviscid
descriptions.22 Viscous flow simulations imply the generation of vorticity on the surfaces of the
bodies and their interactions are in turn mediated by the transport and dissipation of these vortices.

Varying the ratio between viscous and inertial effects could drastically affect the qualitative
response of the system. For example, the onset of schooling seems to coincide with a transition from
viscous to inertial environments (Re ∼ 1000).23, 24 Other examples include the behavior of clusters
of particles in a vibrating fluid, where a wide variety of patterns seem to be achievable by varying
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FIG. 1. Case A1: The set up consists of a master of diameter Dm, forced to move forward at the constant velocity Um , and a
slave of diameter Ds, initially located behind the master at the separation distance s. Case A2: The set up consists of a master
of diameter Dm, forced to move forward at the constant velocity Um , and a slave of diameter Ds, initially located above
the master at the separation distance s. Case B: The set up consists of a master of diameter Dm and a slave of diameter Ds,
initially located beside the master at a distance d between the centers of mass. The master is forced to oscillate horizontally
according to xm = A sin(2π t/T + φ), xm being the master’s location of its center of mass and A, T , and φ, respectively, the
oscillation amplitude, period, and phase.

the Re between 2 and 10,9 or the change in behavior of a gravity-driven dense suspension jet around
Re ∼ 1.8

In this study, we assess the role of viscous interactions by performing simulations of a prototyp-
ical system of interacting bodies consisting of two moving cylinders immersed in a two-dimensional
viscous, incompressible flow. In these simulations the motion of one cylinder (master) is imposed,
while the other (slave) is free to respond to the flow. The interaction between master and slave is
purely flow mediated, as no contact is taken into account. Inspired by the works of Nair and Kanso18

and Tchieu et al.19 we consider three configurations as illustrated in Figure 1. In cases A1 and A2
(cases described below), the master cylinder moves forward at a constant velocity, while in case B it
is forced to oscillate horizontally. We investigate the slave’s response and we compare our findings
with those of inviscid simulations19 in order to assess the role of viscous effects, vorticity generation,
and transport on these interactions.

In the present paper, the Navier-Stokes equations are solved using a multiresolution, remeshed
vortex method25–27 while the enforcement of the no-slip boundary conditions and the interaction of
the objects with the surrounding fluid is realized through a Brinkman penalization technique.21, 28, 29

The feedback from the fluid to the freely moving cylinder is captured through the projection method
which, by letting the fluid evolve inside the objects, allows one to compute the transfer of linear and
angular momenta to the body.21, 29 The remeshed vortex methods are coupled with wavelet based
adaptivity to increase computational efficiency.27, 30–32

The paper is organized as follows. In Sec. II the numerical method is described while its
validation and convergence properties are illustrated in Sec. III. Its application to several fluid
mediated problems is presented in Sec. IV. The findings of this work are summarized in Sec. V.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

We consider a two-dimensional incompressible, viscous flow in an infinite domain (�), in
which a collection of N moving rigid bodies are immersed. We denote with �i, i = 1, . . . , N the
support of the solids, which are assumed to be of the same density of the fluid (ρ = 1). The flow
field is described by the Navier-Stokes equations (Eqs. (1) and (2)) along with the no-slip boundary
conditions at the surface of the bodies ∂�i (Eq. (3)), while the feedback from the fluid to the freely
moving bodies is governed by Newton’s equation of motion (Eqs. (4) and (5)):

∂u
∂t

+ (u · ∇) u = − 1

ρ
∇ p + ν∇2u, x ∈ � \ �i , (1)

∇ · u = 0, x ∈ � \ �i , (2)
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u = ui , x ∈ ∂�i , (3)

mi ẍi = FH
i , (4)

d(Ii θ̇i )

dt
= MH

i , (5)

where ν is the kinematic viscosity, ui , xi , mi, Ii and θ i are, respectively, the velocity, the position of
the center of mass, the mass, the moment of inertia, and the angular velocity of the body i, while FH

i
and MH

i are the hydrodynamic force and momentum exerted by the fluid on the body i.
This system of equations (Eqs. (1)–(5)) is solved by combining remeshed vortex

methods25, 26, 33, 34 and Brinkman penalization28, 35–37 with a projection approach21, 29, 38 and inter-
face tracking via level sets. Adding the penalization term and rewriting the momentum equation in
its velocity-vorticity (u–ω, where ω = ∇ × u) formulation, Eqs. (1) and (2) become

∂ω

∂t
+ ∇ · (uω) = ν∇2ω +

N∑
i=1

λ∇ × χi (ui − u), x ∈ � , (6)

∇ · u = 0, x ∈ � , (7)

where χ i are the characteristic functions describing the bodies (one inside, zero outside) and
λ � 1 is the penalization factor. The velocity field u is computed from vorticity by solving the
unbounded Poisson equation, ∇2u = −∇ × ω. Translational (ut

i ) and rotational (ur
i ) components of

ui = ut
i + ur

i are recovered through a projection approach.21, 29 The combined use of such techniques
bypasses the direct estimation of hydrodynamic forces and momenta acting on the immersed bodies
and has been proven to capture accurately the fluid-structure interactions between multiple solids
and the flow.21

Remeshed vortex methods rely on the regularization of the vortex particles on an underlying
cartesian grid and interpolation of the vorticity carried by the particles through a high order ker-
nel such as the M ′

4.25, 26, 33, 34 The presence of an underlying regular grid also allows for the fast
evaluation of all differential operators using finite difference schemes. Furthermore, the regularized
grid enables the use of wavelet based adaptivity.30, 31 The grid nodes are adapted according to a
wavelet multiresolution analysis of the vorticity and velocity fields in order to capture the emergence
(grid refinement) or disappearance (grid compression) of small scales. Refinement, computing, and
compression stages regularly alternate while evolving the solution of the system in time.

The solution of the Poisson equation on multiresolution regular grids is obtained through a fast
multiple method (FMM) thus accommodating the far field boundary condition.39, 40 The description
of the use of FMM with wavelet based adaptivity for incompressible flows past bluff bodies is given
by Rossinelli.41

refinement: R(ωn and un)|tr , (8)

∇2ψn = −ωn, (9)

un = ∇ × ψn, (10)

ut,n
i = 1

mi

∫
�

ρχn
i undx, (11)

θ̇n
i = 1

Ii

∫
�

ρχn
i

(
x − xn

i

) × undx, (12)

ur,n
i = θ̇n

i × (
x − xn

i

)
, (13)

un
λ = un + λ�t

∑N
i=1 χn

i

(
ut,n

i + ur,n
i

)
1 + λ�t

∑N
i=1 χn

i

, (14)
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ωn
λ = ∇ × un

λ, (15)

∂ωn
λ

∂t
= ν∇2ωn

λ, (16)

∂ωn
λ

∂t
+ ∇ · (

un
λω

n
λ

) = 0, (17)

ωn+1 = ωn+1
λ , (18)

xn+1
i = xn

i + ut,n
i �tn, (19)

θn+1
i = θn + θ̇n

i �tn, (20)

compression: C(ωn+1 and un+1)|tc . (21)

A time-step from tn to tn + 1 is detailed by Eqs. (8)–(21), assuming that all quantities are
known up to time tn. We denote with R(a)|tr and with C(a)|tc , respectively, the refinement and
compression stages given the wavelet analysis of the field a, using the refinement and compression
thresholds tr and tc. Throughout this work, if not specified otherwise, we consider the domain
� = [0, 1] × [0, 1], set λ = 104, tr = 10−4, tc = 10−6, Lagrangian CFL condition42 LCFL = 0.1,
and implement χ to follow the definition of Gazzola et al.,21 with smoothing length ε = √

2he,
where he is the minimum allowed grid spacing in the multiresolution representation. Hereafter, we
will refer to he as effective grid spacing and to ER = 1/he as the effective resolution. All spatial
operators are discretized with fourth-order accurate schemes, except for the fifth-order average
interpolating wavelets. Time integration is carried out via Gudonov splitting: the penalization term
(Eqs. (14) and (15)) is treated with an implicit Euler scheme, diffusion (Eq. (16)) through a second-
order Runge-Kutta scheme coupled with local time stepping,30, 41 particle advection (Eq. (17)) via
a second-order Runge-Kutta scheme and body advection (Eqs. (19) and (20)) with a first-order
explicit Euler scheme. The present algorithm is implemented using the multi-resolution adapted
grids (MRAG) library.30, 31, 41

III. VALIDATION

We present a validation study of the computational methods employed in this work (Sec. II).
We consider the flow past an impulsively started cylinder to validate the remeshed vortex method
along with the penalization approach. In addition, we consider the problem of two cylinders in the
course of a collision and compute the forces induced by the fluid on the two cylinders to validate
the numerical scheme for fluid mediated interactions. The space and time convergence properties of
the numerical scheme (Sec. II) are investigated by performing simulations for the test case B.

A. Flow past impulsively started cylinder at Re = 1000

Flow past an impulsively started cylinder is a challenging problem for computational methods
due to the singularity of the forces acting on the body at early times and the cascade of vortical
structures emerging over time. In the domain � = [0, 1] × [0, 1], we considered a cylinder of diameter
D = 0.05, initially located at (0.4, 0.5), moving at constant velocity UT = 0.1 (i.e., ut = UT , ur = 0),
impulsively started in an incompressible, viscous flow at Re = |UT |D/ν = 1000. Furthermore, we
set ER = 8192 × 8192, LCFL = 0.01 and ε = 2

√
2he. As can be seen in Fig. 2, the drag coefficient

Cd = 2Fx/(|UT |D) computed here by integrating the penalization term F = − ∫
�

χ (UT − u)dx,
compares well with reference simulations and its evolution in time is accurately captured, with a
discrepancy found to be less than 1% at all times.25
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FIG. 2. Drag coefficient (Cd) evolution against dimensionless time T = 2|UT |t/D for flow past impulsively started cylinder
at Re = 1000. The dotted (red) line was obtained setting ER = 8192 × 8192, LCFL = 0.01, and ε = 2

√
2he . Solid (black and

blue) lines are, respectively, reference solutions of Refs. 25 and 37. Since the discrepancy is negligible, the three solutions
overlap and the two solid lines are nearly indistinguishable.

B. Inline impact of two cylinders without a free stream

We considered as a reference the system investigated by Bampalas and Graham.10 The system
involves two cylinders, in a viscous, incompressible flow, impulsively started and approaching each
other by moving at the same constant velocity along the line connecting their centers. At impact, their
motion is instantaneously stopped and the two cylinders remain stationary. In Bampalas and Graham
simulations were performed using a Galerkin weighted residual finite element method with a body
fitted mesh and the authors report flow induced force coefficients (Cd) acting on either cylinder as
function of the Reynolds number.

In Fig. 3(a), we report the comparison between the forces presented in Bampalas and Graham10

and the forces computed by the present methodology for Re = 25, 50, 100, and 200. We note
that the forces computed by the integration of the penalization term, as in Sec. III A, are readily
extended to multiple bodies. Our results are in good agreement with the results of the reference
simulations before impact, even though for Re = 100 and Re = 200, discrepancies tend to appear
when approaching collision. After impact, for all Re investigated, discrepancies are found to be
larger during the transient post collision. As pointed out in Bampalas and Graham,10 the distortion
of the numerical elements, and subsequent remeshing, especially approaching contact, maybe be
source of oscillations and loss of accuracy in their approach. This observation may explain why
their method does not effectively capture the singularity event (evident for Re = 100) and thus the
differences with our solution after impact.

Our simulations were carried out in a computational domain � = [0, 1] × [0, 1], initializing two
cylinders of diameter D = 0.05 at a distance between their centers of L = 3D and moving towards
each other with a velocity U set to one diameter D per time unit. Force coefficients Cd were reported
in Fig. 3 against the dimensionless time T ∗ = |U|(t − timpact )/D. Furthermore, we set ER = 8192
× 8192, LCFL = 0.1 and ε = √

2he.

C. In-line impact of two cylinders in uniform free stream

In this section, we considered the impact between two inline cylinders immersed in a uniform
free stream (U∞), as detailed by Bampalas and Graham.10 The upstream cylinder is stationary,
while the downstream cylinder moves towards the first one at a constant velocity U = −U∞. After
collision both cylinders remain stationary. In this case, the flow induced forces acting on the bodies
are no longer symmetric due to the interaction of the upstream cylinder’s wake with the second
cylinder.
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before impact ct* after impac * after impactbefore impact
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FIG. 3. Inline impact of two cylinders without free stream. (a)–(d) Evolution of the force coefficient Cd against the
dimensionless time T* for, respectively, Re = 25, 50, 100, and 200. Dotted (red) lines and symbols represent, respectively,
the solutions of the present method and Bampalas and Graham.10 (e) Given from left to right and top to bottom is the time
sequence of the vorticity field (−0.66 ≤ T* ≤ 2, �T* = 0.33).

We report a comparison of the measured force coefficients (Cd) at Re = 100 in Fig. 4(a). For
completeness we also report the evolution of net force coefficients after collision in Fig. 4(b), and
corresponding vorticity fields in Fig. 4(c). We note that force coefficients acting on the upstream and
downstream cylinders agree well with the reference solution.10

Simulations were performed in a computational domain � = [0, 1] × [0, 1], setting the free
stream velocity U∞ to one diameter D per physical time unit and initializing the two cylinders of
diameter D = 0.0125 at a distance of L = 15D between their centers. In Bampalas and Graham,10

the two cylinders were initialized closer to each other and their wakes were let to develop for an
unspecified time, before impulsively starting the downstream cylinder. Here we opted for a starting
condition in which the downstream cylinder is impulsively started while initially located far enough
to ensure the development of the upstream wake. Force coefficients Cd are reported in Fig. 4 against
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* *

(b)(a)

* *

(c)

upstream

downstreamupstream

downstream

FIG. 4. Inline impact of two cylinders in uniform free stream. (a) and (b) Evolution of the force coefficient Cd against the
dimensionless time T* at Re = 100 before (a) and after (b) collision. Circles and triangles correspond, respectively, to upstream
and downstream cylinders according to Bampalas and Graham.10 Dashed lines (red and blue) correspond, respectively, to
upstream and downstream cylinders in the present computations. (c) From left to right and top to bottom, vorticity fields at
times T* = −13.3, −6.7, 0, 1.7, 3.3, 5, 6.7, 8.3, 10, 11.7, 18.3, 25.

the dimensionless time T ∗ = |U|(t − timpact )/D. Furthermore, we set the effective resolution of the
multiresolution solver to ER = 16 384 × 16 384 with LCFL = 0.1 and ε = √

2he.

D. Convergence study

We performed a convergence study in space and time, for the test case B (Fig. 1). In the
computational domain � = [0, 1] × [0, 1], we considered two equally sized cylinders (Dm = Ds

= 0.05), initially located at (0.4, 0.5) and (0.525, 0.5) and the Reynolds number Re = |Um |Dm/ν

= 100 (for further simulation details see Fig. 5 and Sec. IV B). Convergence orders were determined
by computing the L1, L2, and L∞ norm of the error e(t) =‖ xcm best resolved (t) − xcm(t) ‖, where xcm

is the slave’s center of mass location.
Regarding space convergence, two different studies were performed by varying the effective

resolution ER between 512 × 512 and 4096 × 4096 with 16 384 × 16 384 as best resolved case,
and setting LCFL = 0.01. In the first study, we fixed the model by setting the mollification length
proportional to the coarsest effective grid spacing (ε = √

2he
512). In the second study, the ratio ε/he is

chosen to be constant to investigate the convergence to the actual geometry. As we can see in Fig. 5,
the method shows third order convergence (L1 = 3, L2 = 3, L∞ = 3) fixing ε = √

2he
512 and between

first and second order (L1 = 1.4, L2 = 1.5, L∞ = 1.5) fixing ε/he = √
2. Given the second order

smoothing function used in Ref. 21 for χ , we expect, for the fixed model case, a space convergence
order lower than 4 but greater than 2, due to the compact limited support of the mollified region.

Time convergence study was performed setting ER = 4096 × 4096 and ε = √
2he and varying

LCFL between 0.1 and 0.003 with 0.001 as best resolved case. The order of convergence was found
to be between first and second (L1 = 1.2, L2 = 1.74, L∞ = 1.2) (Fig. 5(c)). Time integration is
performed via Godunov splitting, entailing a mix of first and second order operators (second order
Runge-Kutta for Eqs. (16) and (17), implicit Euler for Eq. (14) and first order explicit Euler for
Eqs. (19) and (20)), thus we expect a convergence rate between one and two. We conclude that the
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FIG. 5. Convergence study for case B. The master oscillates horizontally according to Fig. 1. The amplitude was set to A
= Dm, period T = 1 physical time unit, φ = 0, and simulations were carried out up to physical time t = 1.5T . (a) Space
convergence (mollification length fixed based on ER, ε = √

2he
512): L∞(e) (blue), L1(e) (black), and L2(e) (red) are plotted

against ER. LCFL was set to 0.01. (b) Space convergence (ratio ε/he fixed to
√

2): L∞(e) (blue), L1(e) (black), and L2(e)
(red) are plotted against ER. LCFL was set to 0.01. (c) Time convergence: L∞(e) (blue), L1(e) (black), and L2(e) (red) are
plotted against LCFL. ER was set to 4096 × 4096. For all studies we used λ = 104. Dashed lines (blue, black, red, green)
represent (respectively) first, second, third, and fourth order slopes.

convergence rates of the method are in agreement with the spatial and time discretization of the
differential operators.

IV. RESULTS

A. Slave’s response to master’s forward motion: Case A

In this section, inspired by the work of Tchieu et al.,19 we consider the slave’s response
to a master’s imposed forward motion (Fig. 1, cases A1 and A2). We performed simulations of
incompressible, viscous flow in which the master is impulsively started and the slave is initially at
rest. The Reynolds number and the slave’s diameter are varied in order to assess their influence on
the system’s behavior. It is noted that cases A1 and A2 do not have the same initial conditions as
Tchieu et al.,19 where the slave is initially moving with the master cylinder then passively advected
by the fluid mediated interactions for t > 0. In a viscous simulation, if the slave is given an impulsive
velocity at time t = 0, the drag on the cylinder at t = 0+ is infinite due to finite Reynolds number
effects, therefore we have chosen to study the analogous problem where the slave cylinder is initially
at rest and then subsequently moves solely under the influence of the master cylinder for t > 0.

Simulations were carried out in the computational domain � = [0, 1] × [0, 1], where the
master of diameter Dm = 0.025, initialized at (0.2, 0.5), travels at the constant velocity of 2Dm

per physical time unit. For both cases, A1 and A2, we considered three different slave’s diameters,
namely, Ds = Dm, Ds = Dm/2, and Ds = Dm/4, for which we set, respectively, ER = 4096 × 4096,
ER = 4096 × 4096, and ER = 8192 × 8192. Furthermore, for each subcase, the Reynolds number
(Re = Um Dm/ν) was varied between 10 and 500.
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FIG. 6. Case A1. (a) Test case Ds = Dm at dimensionless time T = 24: for several Re, master and slave (full grey aft cylinder,
where the initial position is represented by the dashed cylinder) are superimposed to the corresponding vorticity field.
(b) Test case Ds = Dm/2 at dimensionless time T = 24: vorticity fields. (c) Normalized separation distance s/Dm as function
of dimensionless time T for test case Ds = Dm. (d) Normalized separation distance s/Dm as function of dimensionless time T
for test case Ds = Dm/2. In (c) and (d) solid lines corresponds to Re = 10, 50, 100, 200, and 500 (blue, red, back, green, and
orange, respectively) and the dotted lines refer to the inviscid solution.

1. Case A1

The set up of this study is depicted in Fig. 1. We focus on the effect of the Reynolds number on
the trajectory of a slave initialized behind the master. In all cases of this section, the slave initially
sits at rest at a separation distance s = Dm/10 from the master.

For the test case Ds = Dm, results are illustrated in Fig. 6. We observe that for all Re investigated,
the slave’s qualitative behavior is found to be the same: the aft cylinder is accelerated from rest,
travels a certain distance behind the master and progressively slows down until it stops. In all cases
the separation distance s is observed to monotonically increase in time. Nevertheless, the distance
travelled by the slave is larger for lower Re, indicating that a viscous flow improves the ability of
the master to drag along the slave cylinder. In the test case Ds = Dm/2, we observed the same trend,
although here transport is further enhanced, mainly due to the smaller inertia of the slave.

With the same configuration and initial conditions as described above, we conducted inviscid
simulations following the method described in Tchieu et al.19 In the inviscid case the slave cylinder
initially moves opposite of the master cylinder because the initial impulse of the fluid is exactly
opposite to the initial momentum of the forced body.18 Therefore, as shown in Figs. 6 and 7, the
cylinder separation grows more quickly than the viscous cases and even faster than if there were no
fluid coupling. The creation and diffusion of vorticity in the wake of the viscous cases enhances the
ability of the master cylinder to drag the slave cylinder in its direction of forced motion by creating
a recirculating region behind the cylinder.

A further reduction in diameter to Ds = Dm/4 reveals new dynamics for the slave. In particular
the Reynolds number is found to be responsible of sharp transitions between slave’s behaviors
(Fig. 7). At Re = 10, as also observed in the previous studies, s monotonically increases in time.
However, from Re = 20 to Re = 82, we note that the slave is “trapped” by the master’s vortical
structures and is further accelerated. This effect reduces the separation distance s, which is no longer
a monotonic function of time. Between Re = 30 and Re = 70, s nearly drops to zero by time T = 24
(where T = 2|Um |t/Dm is the dimensionless time). Master and slave thus travel altogether between
Re = 20 and Re = 82, which is the threshold value for which s is again observed to monotonically
increase in time.
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FIG. 7. Case A1. (a) Test case Ds = Dm/4 at dimensionless time T = 24: for several Re, master and slave (full grey aft
cylinder, where the initial position is represented by the dashed cylinder) are superimposed to the corresponding vorticity
field. (b) Normalized separation distance s/Dm as function of dimensionless time T. The Reynolds number is between 10 and
500. Solid lines (of varying color) denote differing Reynolds numbers while the dotted line indicates the inviscid solution.
(c) Enlargement of panel (b).

We note that we cannot exclude a similar behavior for Ds = Dm and Ds = Dm/2 at Re < 10, but
we could not investigate such scenarios due to the prohibitive computational costs since the time step
is constrained by high viscosity. It is also noted that in all simulations the wake of the slave cylinder
is negligible and thus it can be safely assumed that response of the slave cylinder is dominated by
the wake produced from the master cylinder.

In order to study how the finite size of the slave cylinder’s affects the interaction, we compare
the slave cylinder’s motion with the advection of passive tracers without the presence of the slave
cylinder. We consider Reynolds numbers Re = 50 and Re = 500 and place the respective tracers at
locations where the centers of the slave cylinders initially rest (i.e., for Ds/Dm = 1, 0.5, 0.25, x/Dm

= −1.1, − 0.85, − 0.725 with respect to the center of the master cylinder). The tracers are advected
using a second-order Runge-Kutta scheme. As depicted in Fig. 8(a), for the cases corresponding
to Ds/Dm = 0.5, 1, it is seen that distance traveled �x/Dm by the cylinder (dotted lines) is greater

0 4 8 12 16 20 24
0

5

10

15

m
D

x 
/ 

T

D  / D  = 0.5

D  / 
D  =

 0.25

D  / D  = 1

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

1.2

D  / D  = 0.25

D  / D
  = 0.5 D  / D  = 1

m
D

x 
/ 

T

(a) Re=50 (b) Re=500

FIG. 8. The distance traveled to the right by a slave cylinder of diameter Ds/Dm = 0.25, 0.5, 0.25 (dotted lines, black,
blue, red, respectively) with s/Dm = 0.1 and a passive tracer (solid lines) initially located at the center of the slave
cylinder for (a) Re = 50 and (b) Re = 500. The passive tracer is initially placed at a distance x/Dm = −1.1, − 0.85,
− 0.725 (black, blue, red) with respect to the center of the master cylinder.
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than the distance traveled by the passive tracer. This suggests that the slave cylinder can be dragged
further downstream than a passive tracer that is initialized at the same initial location. However, the
passive tracer travels slightly further to the right when it is placed at a location corresponding to
the case where the slave cylinder is Ds/Dm = 0.25. At Re = 500 (Fig. 8(b)), the slave cylinder is
always pulled further downstream than its passive tracer counterpart. It is also noted that in these
cases, at long times, the slave cylinder drifts to the right due to its inertia whereas the passive tracers
decelerate more quickly.

2. Case A2

In the potential flow simulations of Tchieu et al.,19 for configurations corresponding to case A2
(see Fig. 1 for the setup), the slave was found, in some cases, to overtake the master, due to the large
side forces generated by the master. Here we tested an analogous case, where the slave cylinder is
initially at rest, in both viscous and inviscid environments. We specifically investigate the role of the
Reynolds number, as in case A1. Again, we clarify that the cases considered in Tchieu et al.19 have
different initial conditions than the viscous simulation for reasons mentioned in Sec. IV A 1. In all
cases of this section, the slave initially is placed at a separation distance s = Dm/5 from the master
(Fig. 1).

For the test cases Ds = Dm and Ds = Dm/2, results are illustrated in Fig. 9. As can be noticed, for
all Re investigated, the slave’s qualitative behavior is the same: the aft cylinder is accelerated from
rest, it experiences a side force which moves the cylinder into the wake, then drafts in the master’s
wake, travels a certain distance behind the master and progressively slows down until it stops. In all
cases the separation distance in the horizontal direction sx is observed to monotonically increase in
time. Consistently with case A1, a viscous flow is shown to improve the ability of the master to drag
along the slave cylinder. Moreover, in the inviscid case where the slave cylinder is at rest, the same
trend occurs. The side force generated in the low pressure region between the two cylinders pulls the
slave cylinder behind the master and then the slave stops. As seen in Figs. 9(c) and 9(d), the inviscid
case gives the maximum separation and is pulled only very slightly in the positive x–direction.

As already observed in case A1, a further diameter reduction to Ds = Dm/4, reveals the existence
of two threshold Reynolds numbers, corresponding to transitions to different qualitative behaviors
(see Fig. 10). In particular, for Re < 30, the horizontal separation distance sx monotonically increases
in time, for 30 ≤ Re ≤ 49 the slave is further accelerated and the separation sx nearly drops to zero

Re=30

Re=50

Re=100

Re=500

Re=10 Re=10

Re=50

Re=100

Re=500

Re=30

(b)(a) (c)

(d)

s 
 /

D
s 

 /
D

FIG. 9. Case A2. (a) Test case Ds = Dm at dimensionless time T = 32 for several Re. Master (initial position is represented
by the orange dashed cylinder) and slave (full grey aft cylinder, where the initial position is represented by the black dashed
cylinder) are superimposed to the corresponding vorticity field. (b) Test case Ds = Dm/2 at dimensionless time T = 32:
vorticity fields. (c) Normalized separation distance in the horizontal direction s/Dm as function of dimensionless time T for
test case Ds = Dm. (d) Normalized separation distance in the horizontal direction s/Dm as function of dimensionless time T
for test case Ds = Dm/2. In (c) and (d) solid (blue, green, red, black, and orange) lines correspond to Re = 10, 30, 50, 100,
and 500 whereas the dashed line corresponds to the inviscid case.
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FIG. 10. Case A2. (a) Test case Ds = Dm/4 at dimensionless time T = 32 for several Re. The master (initial position is
represented by the orange dashed cylinder) and slave (full grey aft cylinder, where the initial position is represented by the
black dashed cylinder) cylinders are superimposed to the corresponding vorticity field. (b) Normalized separation distance
in the horizontal direction sx/Dm as function of dimensionless time T. Solid lines correspond to Reynolds number ranging
between 10 and 500. Dashed line corresponds to the inviscid case. (c) Enlargement of panel (b).

and finally for Re > 49, sx is again observed to increase in time. Varying the initial master-slave
distance, we always observed either a monotonically increase of sx or sudden accelerations as in
the last case. We mention that similar behavior may occur for Ds = Dm and Ds = Dm/2 for Re <

10, but we could not investigate such scenarios due to the prohibitive computational costs related to
diffusion constraints.

It is concluded that the phenomena illustrated using the method defined in Tchieu et al.19

cannot qualitatively reproduce the effects discovered when the slave cylinder is initially at rest in
a viscous environment. More specifically the induced motion in the inviscid case is minimal while
viscosity effects increase the fluid-mediated response of the slave cylinder. With increasing viscosity,
it appears that bodies smaller than the master cylinder can experience a free ride from rest by sitting
in the wake of the master cylinder. This may have interesting implications of viscous transport of
material via biogenic ocean mixing as discussed in Katija and Dabiri43 and Dabiri.44 At most, the
inviscid solutions only provide a lower limit of interaction when the slave body is initially at rest.

As with configuration A1, to assess how the finite size of the slave cylinder affects the fluid-
mediated interactions, we plot the paths of passive tracers for Re = 50 and 500 in Fig. 11. The passive
tracers are initially located at y/Dm = 1.2, 0.95, 0.825 with respect to the master cylinder (correspond-
ing to simulations in case A2 with Ds/Dm = 1.0, 0.5, 0.25). The distance traveled is compared in
Fig. 12. Note the similarities in path initially taken by both the passive tracer and the respective slave
cylinder. The passive tracer and the cylinder both initially travel in the negative x–direction before
going in the positive direction. For Re = 50, the passive tracers exhibit the same qualitative behavior
described in case A1. At Ds/Dm = 0.25 the passive tracer is pulled further to the right than the slave
cylinder. At Ds/Dm = 0.5 and 1 the slave cylinder moves further downstream than the passive tracer,
but the differences are slight. For Re = 500 (Fig. 12(b)), we see that the slave cylinders drift to the
right at a higher velocity than the passive tracers as in case A1.
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(a) Re=50

(b) Re=500

FIG. 11. The advection of a passive tracer up to T = 32 initialized above the forced cylinder for (a) Re = 50 and (b) Re
= 500. The passive tracer is initially placed at a distance y/Dm = 1.2, 0.95, 0.825 corresponding to the center of the slave
cylinders for cases Ds/Dm = 0.25, 0.5, 0.25 (dotted line, black, blue, red, respectively) with s/Dm = 0.2. Grey dots indicate
the starting and ending positions of the tracers. Vorticity field is given for reference.

We note that additional simulations where the slave cylinder was placed at oblique angles
trailing the master cylinder were performed and no significant differences were observed between
these cases and those presented in Sec. IV A, thus these results are omitted for brevity.

B. Slave’s response to master’s horizontal oscillation: Case B

In this section, inspired by the work of Nair and Kanso18 in potential flow (also see Lamb45

and Borisov et al.46), we considered the slave’s response when the master is forced to oscillate
horizontally (Fig. 1, case B). We performed simulations of incompressible, viscous flows in which
the master is impulsively started and the slave is initially at rest. All simulations were carried out in
the computational domain � = [0, 1] × [0, 1], in which the master of diameter Dm = 0.05, initially
located at (0.4, 0.5), oscillates horizontally according to xm = A sin(2π t/T + φ), where xm is its
center of mass and A, T , and φ, respectively, oscillation amplitude, period and phase. In all cases
ER = 2048 × 2048 and T = 1 physical time unit.

As for case A1 and A2, we focused on the effect of the Reynolds number (10 ≤ Re ≤ 100) on the
system’s dynamics. Here the characteristic velocity was defined as |Um | = |2π A/T | and therefore
Re = 2π ADm/(νT ). Furthermore, the systems investigated were characterized by A = Dm, initial
separation distance 2Dm ≤ d ≤ 5Dm, initial slave’s location (0.4 + d, 0.5) and diameter 0.1Dm ≤ Ds

≤ 1.25Dm.
In Fig. 13(a), we report the slave’s normalized displacement (�x/Dm, positive and negative �x,

correspond, respectively, to repulsion and attraction by the master), versus the dimensionless time
T = 4π At/(T Dm), for the system characterized by Ds = Dm, d = 2.5Dm and φ = 0. Similar to
cases A1 and A2, we observe a change in qualitative behavior as a function of the Reynolds number.
In fact, when Re > 27, the slave is repelled by the master as observed in Fig. 13(c), while for
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FIG. 12. The distance traveled to the right by a slave cylinder of diameter Ds/Dm = 0.25, 0.5, 0.25 (dotted line, black,
blue, red, respectively) with s/Dm = 0.2 and a passive tracer (solid line) initially located at the position corresponding to
the center of the slave cylinder for (a) Re = 50 and (b) Re = 500. The passive tracer is initially placed at a distance y/Dm

= 1.2, 0.95, 0.825 (black, blue, red) with respect to the center of the master cylinder. Note that oscillatory vortex shedding is
not visible in (b) as compared to Fig. 11 because the flow remains symmetric.
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FIG. 13. Case B. (a) Slave’s normalized displacement (�x/Dm) versus dimensionless time T, for several Reynolds numbers
(from top to bottom Re = 100, 80, 60, 50, 40, 30, 27, 25, 20, 15) and φ = 0, A = Dm, Ds = Dm, d = 2.5Dm. (b) Threshold
Reynolds number (Reth) as function of Ds/Dm and d/Dm. (c)–(e) Evolution in time of the vorticity fields for the cases
Re = 80, 27, and 20 reported in panel (a). The dashed cylinder represents the initial slave’s location.

Re < 27, the slave is attracted as observed in Fig. 13(e). The threshold value of Reth  27,
corresponds to the slave oscillating around its initial position (Fig. 13(d)). The vorticity plots,
Figs. 13(c)–13(e), reveal that for Re > 27, the flow develops a secondary structure constituted by a
top and bottom patch of, respectively, positive and negative vorticity. Such structure, inducing a flow
to the right of the master, contributes to the repulsion of the slave. On the other hand, an increase in
viscosity, is responsible for a quick dissipation of this structure, favoring the attraction of the slave
by the master.

As mentioned above, the same study was carried out for several configurations where both
d/Dm and Ds/Dm where varied, in order to assess the impact of these parameters on the system.
All simulations presented the same trend as the one above described and the threshold Reynolds

A=0.25D

A=0.5D A=1.50D

A=1.0D m

(b)
A=1.50D

A=1.0D

A=0.5D

A=0.25D

(a)

FIG. 14. Case B. Vorticity fields at physical time t = 6, corresponding to oscillation amplitudes A = 1.5Dm, A = 1Dm,
A = 0.5Dm, A = 0.25Dm, and φ = 0. The dashed cylinder represents the initial slave’s location. (b) Slave’s normalized
displacement (�x/Dm) versus physical time t for A = 1.5Dm (blue), A = 1Dm (green), A = 0.5Dm (red), A = 0.25Dm (black).
Solid and dashed lines correspond, respectively, to φ = 0 and φ = π .
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Re = 500, A=1.0Dm
impinging vortex pairs

master slave

FIG. 15. Vorticity field at physical time t = 6, with oscillation amplitude A = Dm, Re = 500, and φ = 0. The slave cylinder
on the right is free to move. Shades are over saturated to clearly show how the vortex pair created from the motion of the
master cylinder impinges on the slave cylinder, imparting it with positive x −momentum.

numbers identified, given the pairs (d/Dm − Ds/Dm) are reported in Fig. 13(b). The initial separation
distance d/Dm strongly influences Reth causing its exponential decay. On the other hand, the diameter
ratio Ds/Dm, does not substantially affect Reth, revealing that the flow features play a more important
role than the inertia of the slave.

We note that in the study of Nair and Kanso,18 a change in the system’s qualitative behavior
was achieved by switching the oscillation phase from φ = π (repulsion) to φ = 0 (attraction).
In a viscous environment this behavior is not observed and to an out-of-phase oscillation simply
corresponds an out-of-phase slave’s displacement curve, without causing any change in qualita-
tive behavior, whether repulsive or attractive. For clarity we did not report out-of-phase curves in
Fig. 13(a), nevertheless, as an example, slave’s displacement curves are depicted in Fig. 14(b)
for Re = 100. In such simulations the oscillation amplitude was set between 0.25Dm ≤ A
≤ 1.5Dm and the slave was initialized at (0.4 + 1.5Dm + A, 0.5). As can be noticed the larger
the amplitude A, the stronger the repulsion of the slave from the master, but switching phase did
not affect the slave’s drifting direction. It is observed, even initially in the first period, that the
viscous and inviscid case are qualitatively different. For example, in the inviscid case, for sinusoidal
forcing with φ = 0 (φ = π ), it has been shown that the slave cylinder is initially attracted to (re-
pelled by) the master cylinder.18 In all viscous cases, both the master and slave cylinder oscillate
in phase. In a more global sense, the long time behavior is also different. In inviscid cases where
φ = 0, the slave cylinder is initially attracted and then repelled given large initial separation dis-
tances or attracted to the point of collision with the master cylinder for shorter initial separation
distances.18, 46 In viscous simulations, the creation of a vortex dipole (see Fig. 15) that impinges
on the slave cylinder at every cycle transports momentum from the fluid to the slave cylinder
allowing it to more effectively move away from the oscillating cylinder. This mechanism is not
present when Re < 27 where the dipoles are less intense and drastically diffuse before reaching
the slave cylinder. The transfer of momentum is exacerbated by both the increase in oscillation
amplitude and Reynolds number where the transport momentum becomes more highly correlated
with the imposed x–motion of the master cylinder. We show a simulation at Re = 500 to demon-
strate the creation of successive dipoles and the subsequent impingement on the slave cylinder
(Fig. 15).

We note that passive tracers were also introduced in the flow for comparison. The paths of the
tracers were found to be qualitatively the same as the slave cylinder, e.g., attracted to the cylinder
when Re = 20 and repelled when Re = 80.

V. CONCLUSIONS

We considered the dynamics of two interacting moving cylinders immersed in a two-dimensional
viscous, incompressible flow. The simulations are performed via a wavelet adapted, multi resolution,
remeshed vortex method coupled with Brinkman penalization and projection approach. The present
viscous studies have been motivated by related potential flow simulations of slave-master cylinder
interactions18, 19 and are aimed to assess the role of finite Reynolds numbers in these situations.
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The method is validated on the problem of two interacting cylinders, computing the forces
experienced by both solids. Results were found to be in good agreement with reference simulations
and an error analysis of the method is presented to assess its convergence in space and time.

Two flow mediated problems were considered, involving a master cylinder forced to move
forward (cases A1 and A2) and to oscillate horizontally (case B) and a slave cylinder free to respond.
In both cases the qualitative response of the system was found to depend on the Reynolds number,
responsible for sharp transitions between different regimes. In case A1 and A2, the Reynolds number
is responsible for sudden accelerations of the slave, while, in case B, it dictates whether the slave is
repelled or attracted by the master. In some instances of cases A1 and A2, it is even possible that the
slave cylinder is pulled further downstream by the master cylinder than if the slave cylinder were
replaced by a passive particle. Thus, in specific cases, a finite size particle may be transported more
effectively through fluid-mediated interactions than even passive tracers.

We conclude by demonstrating that there can be drastic differences in the behavior of inter-
acting bodies as simulated by potential flow simulations and by viscous simulations at finite and
moderate Reynolds numbers. It is worth mentioning that at these moderate Reynolds numbers, three-
dimensional instabilities may occur (e.g., for the circular cylinder, the onset of instability occurs at
Re ≈ 200, see Ref. 47). Simulations in three dimensions are, at the moment, prohibitively costly (the
added dimensionality makes simulations orders of magnitude more expensive) and thus we have
presented a two-dimensional analog here in hopes of elucidating fundamental Reynolds number
effects on the fluid-mediated interactions. Future work will focus on extending the Reynolds number
regime of the present studies and adding capabilities to simulate self-propelled, three-dimensional
swimmers.
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