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Abstract

The semi-Lagrangian Vortex method (VM) and the Lattice Boltzmann method (LBM) are used
to investigate flows simulations in the incompressible regime. In this study, a proven version
of each method is used and compared on di↵erent three dimensional benchmarks in terms of
numerical accuracy, convergence, numerical di↵usion and dissipation. The first comparisons are
made on a convected vortex to study and compare the numerical dissipation of LBM and VM.
Then the Taylor-Green vortex is investigated to compare the dissipation rate of the kinetic energy
of each method. It is shown that both methods converge to the same solution but in a di↵erent
way. The VM performs better than the LBM for the lowest resolution whereas LBM appears to
be more accurate for the growing resolutions. These results are confirmed on 3D simulations with
wall boundaries for the sti↵ test case of the wake behind a 3D cube at Re = 290 and Re = 570.

Keywords: Vortex Methods, Lattice Boltzmann, Comparison, Numerical simulation, method
accuracy, Taylor-Green Vortex, flow around a cube

1. Introduction

The design of numerical methods to study fluid flows has had a tremendous development during
past decades. A large family of these methods such as finite di↵erence, finite volume or finite
element approaches as well as spectral/pseudo-spectral methods that deal with primitive variables
and purely Eulerian frameworks, have been extensively studied both from consistency/stability
point of view as well as numerical di↵usivity and dissipation characterization. The later aspect
is important to explore how numerical methods discretization properties a↵ect the numerical
e�ciency and robustness and is highly dependent on the link between the scheme and the grid.

Two other classes of methods, namely Lattice Boltzmann and particle approaches, have met a
large development recently in the context of incompressible or weakly-compressible flows. The
first and major common thread shared by these two methods relies on the fact that they intrin-
sically di↵er from the traditional approaches previously cited. In particular they do not directly
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deal with primitive variables contrary to previous methods and, in particular, the pressure field is
not directly computed in their primary discretization. Moreover, they shortcut the non-linearities
related to the advection phenomenon. For these reasons, they represent for many flow problems
a promising alternative of software design. Now, if one considers Lattice Boltzmann and particle
approaches with respect to each other, they interestingly show complementary aspects: indeed,
on one side Lattice Boltzmann methods lie on a mesoscopic approach: they follow the evolution
of probability distribution functions of fluid particles, thank to a fixed lattice, instead of calcu-
lating the usual macroscopic variables involved in Navier-Stokes equations. On the other side,
particle methods are Lagrangian approaches: the particles, playing the role of discretiazation
elements and computational ”points”, move with the material velocity and the evaluation of
the macroscopic quantities are evaluated on these numerical particles. Lattice Boltzmann is a
mesoscopic Eulerian approach, whereas particle methods are macroscopic and Lagrangian. A
recent focus on this kind of approaches has been investigated [1] for Lattice Boltzmann and SPH
(Smoothed Particle Hydrodynamics) methods to solve 2D problems in multiphase flows, which
demonstrates the current interest of such type of alternative and non-traditional methods.

The present work aims at describing and comparing a semi-Lagrangian Vortex particle method
and a Lattice Boltzmann method, in order to try to numerically highlight the above statements
in the case of various physical 3D problems in CFD (Computational Fluid Dynamics). All the
computations made in this study are based on in-house and research codes, developed or co-
developed by the authors of the present paper.
Vortex methods (VM) belong to particle methods. They are based on a Lagrangian or semi-
Lagrangian description of the governing equations (Euler equations, linear convection-di↵usion
equation, Navier-Stokes equations) which, when they are resolved, provide the dynamics and the
evolution of the fluid elements. In the case of Vortex methods, the fluid elements are numerical
particles, characterized by their spacial position and the vorticity they carry. With the first
vortex sheet computations in the 1930’s [2, 3], the Vortex methods correspond to one of the
first numerical method ever used in the Computational Fluid Dynamics community. This can
be explained by their very natural framework provided by the particle approach, mimicking the
physics, which make them particularly well suited for advection dominated flow problems in par-
ticular because the Lagrangian treatment of the convective term is free of numerical dissipation.
In the 70’s, a lot of e↵orts have been devoted to propose numerical developments that overcome
the main intrinsic di�culties of Lagrangian Vortex methods, mostly relying on the modeling of
the viscous e↵ects in Navier-Stokes equations [4, 5] and the treatment of boundary conditions
[6]. Significant developments were also made in the last decade in order to provide to Lagrangian
Vortex methods (also called Particle Vortex methods) an e�cient evaluation of the velocity field.
Indeed, for Np particles in the computational domain, the classical resolution of the Biot-Savart
law (which gives the velocity from the vorticity) implies to compute the interactions between all
the particles, leading to a O(N2

p ) computational cost. The development of the Fast Multipole
Method (FMM) allowed to drastically reduce the cost of such operation [7, 8, 9, 10, 11]. More-
over, the issue related to the distortion of the particle distribution, which is one of the major
drawback of pure Lagrangian methods, has been subject to deep researches in order to design
accurate Particle Vortex methods preventing from high clustering or rarefaction of the vortex
particles in the domain [10, 12, 13].
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Thanks to the remeshing technique introduced in the 90’s [14, 15], it exists another main vari-
ant of Vortex methods, which relies on a semi-Lagrangian approach. The remeshing technique
was originally proposed to bypass the inherent problem of the distortion of Lagrangian particle
distribution. It consists in periodically redistributing the particles onto an underlying Cartesian
grid in order to ensure their overlapping and thus the convergence of the solution. Following the
introduction of this remeshing procedure, semi-Lagrangian Vortex methods emerged, also called
remeshed Vortex methods (or Vortex Particle-Mesh method or Vortex-in-Cell method). They
are characterized by the fact that the vorticity transport equations and the velocity equation are
both handled on the particles field and on a Cartesian grid. They allow one to benefit from the
strengths of Particle Vortex schemes to handle the flow advection and from the one of grid-based
methods, like immersed boundary methods to model boundary conditions or FFT to solve the
Poisson equation. Based on these di↵erent improvements, Vortex methods have matured and
now o↵er a robust framework able to compete with pure Eulerian methods in the handling of
challenging problems like interface tracking for colliding obstacles [16], fluid-structure interaction
[17, 18, 19], shape optimization [20], flows past blu↵ bodies [19], passive control using porous
media [21], wind turbine aerodynamics [22] or reinforcement learning [23]. In the present study,
the VM denomination will be restricted to the remeshed (semi-Lagrangian) Vortex method. All
the VM simulations presented in this work are based on an in-house parallel and object-oriented
library, implemented in Python/Fortran language.

The Lattice Boltzmann Method [24, 25] (LBM) is nowadays recognized as a fast and reliable
algorithm to numerically solve the Boltzmann equation. The physics of this kind of model is
led by a mesoscopic description of the collision between particles. Hence, if a given collision
operator is chosen with a reliable equilibrium state, a wide variety of physical modeling could be
obtained, from turbulent to relativistic flows [26, 27, 28]. In order to describe fluid dynamics,
governed by the Navier-Stokes equation, the BGK collision operator, based on a relaxation
towards the equilibrium, has been shown to be an e�cient mesoscopic description [29]. The
Lattice Boltzmann methods then perform a discretization of the velocity space in which the fluid
particles are allowed to displace. This discretization has to be highly connected to the mesh
and induces strong constrains in the choice of the velocity lattice. These constrains are often
coupled to the algorithmic advection which basically relies on a collision and a propagation step.
The propagation step is led by the mesh and the collision step depends on the description of the
relaxation process. The traditional way to describe this step is to assign a relaxation parameter
to the main statistical moments when they relax to their equilibrium state. This model, also
referred to as MRT model for Multiple Relaxation Times [30] has been shown to recover the
behavior of the weakly compressible Navier-Stokes equation. It has been shown [31, 32] that this
kind of method has a lower dissipation error compared to traditional finite-di↵erence schemes.
As a counterpart, LBM su↵ers from numerical instabilities when Reynolds number becomes
high. The origins of LBM instabilities have been actively studied and remain an open subject
[33, 34, 35]. Some modern collision models have now emerged and could improve those aspects
by changing the moments definition [36], by re-normalizing the post-collision step [37], or by
enforcing energy conservation [38, 39, 40]. A theoretical comparison of a wide variety of collision
models has been recently reviewed in [41, 35]. In the present study, the LBM method will be
restricted to the standard MRT model with optimized relaxation times defined in [30]. All the
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LBM simulations exposed in this work are based on this approach, which is implemented in a
proper in-house parallel scientific Python/Fortran code.

Despite their increasing applications, the Lattice Boltzmann and Vortex methods su↵er from
a lack of extensive computational characterization in the literature (dissipation, di↵usivity, pa-
rameter dependency, etc.) and deserve a better focus on such issues. This paper is devoted to
the numerical characterization of a Lattice Boltzmann and a remeshed Vortex method. On one
hand this work aims at enlightening the e↵ect of the time and space discretization refinement on
the accuracy and robustness of these techniques and on the other hand at clarifying their grid
vulnerability with a quantitative evaluation of the numerical di↵usion and dissipation. Finally,
this study is an attempt to classify the strong and weak points of both methods in order to o↵er
an understanding of their range of e�ciency.

This paper is organized as follows, Section 2 is dedicated to the presentation of some basic
theoretical background of each method, where the di↵erences and similarities of LBM and VM
algorithms are clearly highlighted and discussed. Then, in Section 3, the two methods are
compared in terms of numerical dissipation on classical test cases : first, the simulation of a
simple convected vortex is investigated in a 3D periodic domain and then the three-dimensional
Taylor-Green vortex flow is performed, followed by a discussion on the evolution of enstrophy and
kinetic-energy. Then, Section 4 discusses the e↵ect of wall boundary condition for each method
on the three-dimensional flow past a cube at di↵erent Reynolds numbers.

2. Theoretical backgrounds

2.1. Vortex method

2.1.1. Governing equations
Vortex methods are based on the velocity-vorticity formulation of the incompressible Navier-
Stokes equations in a domain D, which reads:

@!

@t
+ (u · r)! � (! · r)u =

1

Re
�! in D. (1)

In this equation !, u and Re respectively denote the vorticity, the velocity and the Reynolds
number. The first term corresponds to the advection of the vorticity ! carried by the particles at
the velocity u. The second non-linear term (! · r)u models the stretching of the flow structures
(it vanishes in 2D) and the right hand side term represents the di↵usion of ! under viscous e↵ects.
This equation has to be coupled to the system giving the velocity in terms of the vorticity. Using
the incompressibility condition, the velocity may be directly linked to the vorticity through the
following Poisson equation:

�u = �r ⇥ !. (2)

The system (1)-(2) has to be complemented by appropriate boundary conditions at artificial
boundaries and at solid boundaries (if present). The prescription of such solid boundary condition
may be done by adding a forcing term in the right hand side of equation (1). This issue will be
specifically addressed in section 4.
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2.1.2. Discretization method
To solve the (!,u) Navier-Stokes equations (1)-(2), the flow is discretized onto particles that
carry the vorticity field ! transported at the velocity u and the resolution of the governing
equations is based on a splitting algorithm, which consists at each time step in successively
solving the following equations:

�u = �r ⇥ ! (3)
@!

@t
= div(! : u) (4)

@!

@t
=

1

Re
�! (5)

@!

@t
+ (u · r)! = 0 (6)

�tadapt =
LCFL

kruk1
(7)

The discretization of each equation of this fractional step algorithm is realized in this study by
using a remeshed vortex method.
The advection of vorticity field (eq. (6)) is performed in a Lagrangian way using a vortex method:

8
>>>>>>>>><

>>>>>>>>>:

dxp

dt
= u

n
j (xp), j 2 {1, 2, 3}

x
n
p = x

n
i , (advection)

d!p

dt
= 0,

!
n+1
i =

X

p

!
n
p⇤4,2

✓
x
n+1
p � xi

h

◆
(remeshing)

(8)

At each time step of the method, numerical particles are created on the nodes i of an underlying
uniform Cartesian grid (xn

p = x
n
i ) and the new position x

n+1
p of each particle p is obtained by

solving dtxp = u
n
j (xp), while the transported vorticity remains constant (dt!p = 0). This La-

grangian treatment of the advection step is close to the physics and provides a flexible resolution
of the non-linearities, decreasing drastically the numerical di↵usion. In this work, we numerically
integrate the particle positions in time (dtxp = u

n
j (xp)) by using an explicit 2nd order Runge-

Kutta method. The only di�culty of this step relies on the interpolation of the velocity field
at the intermediate position of the particles in the RK2 scheme, since this intermediate position
will not always be aligned with the grid. In the present case, it is performed by using bilinear
interpolation.
Once the particle positions xp have been updated according to the flow velocity, the vorticity
carried by each particle is redistributed on the neighbouring points of the underlying Cartesian
grid using a remeshing kernel of type ⇤p,r [42] (cf last equation of system (8)). The ⇤p,r remesh-
ing kernels are piecewise polynomial functions of regularity C

r, satisfying the conservation of the
first p moments. The one used in this work is ⇤4,2: this kernel is of regularity C

2, it satisfies the
conservation of 4 moments and includes 6 grid points by direction in its support on which each
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particle can be redistributed. In this work, the particle advection and the remeshing procedure
are performed using a directional splitting approach [43]. It consists in successively solving 1D
convection/remeshing problems, direction by direction, as written in eqs. (8). This directional
splitting allows to save significant computational e↵orts compared to a classical tensorial ap-
proaches, especially in 3D.
The systematic remeshing of particles onto an Eulerian grid at each time step after the advection
stage (eq. (6)), enables to ensure the overlapping of particles required for the convergence of the
method. Moreover the presence of the grid allows to discretize the other equations using e�cient
and/or fast grid methods (finite di↵erences and spectral method based on FFT evaluations). In
the present algorithm, equations (3) to (5) are solved on the grid.
The Poisson equation (3) is resolved in the Fourier space with periodic boundary conditions
according to the following expression :

bu(⇠) =
1

|⇠|2
(\r⇥!) (9)

In the presence of an underlying mesh that is uniform and Cartesian (like in the present VM), the
use of FFT-based evaluations for the velocity computation may be considered as one of the most
appropriate and e�cient approach [44, 45]. However, if the grid is non-uniform then the use of
other type of algorithm is mandatory. In that case, the most famous and e�cient one, which is
widely used in meshless (i.e. purely Lagrangian) Vortex methods [46, 11], is the Fast Multipole
Method (FMM) like in the works dealing with adaptive mesh refinement (AMR) [47, 48].

Regarding the stretching problem (4), it is considered here in its conservative formulation:

@!

@t
= div(! : u), (10)

where div(! : u) := (! · r)u + u div(!). The time integration scheme chosen here to discretize
this equation is the 3rd order Runge-Kutta scheme. Throughout this time discretization, the
velocity field involved in the divergence operator is not modified. The divergence operator is
discretized through a 4th order centered finite-di↵erences scheme on the grid.
Concerning the di↵usion equation (5), it is discretized in time using an implicit 1st order Euler
scheme and then solved in the Fourier space.
An adaptive time-step �tadapt (7) is computed at the end of the fractional step algorithm. It is
based on the non-linear stability of the advection/remeshing scheme in Vortex methods:

�tadv 
LCFL

kruk1
, (11)

where the LCFL denotes the Lagrangian CFL [49]. This number must satisfy LCFL < 1 [42],
which, from a physical point of view, imposes that particles trajectories do not cross. As the time
step defined by this stability condition (11) is not constrained by the grid size or the distance
between the particles but only by the flow strain, it often provides larger time steps compared
to Eulerian schemes, based on CFL conditions.

Table 1 summarizes the time and space discretization schemes used in this work to solve each
equation of the present fractional step algorithm.
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Equation Time discretization method Space discretization method

Poisson equation (3) - spectral method

Stretching (4) RK3 scheme 4th order centered FD

Di↵usion (5) implicit Euler scheme spectral method

Advection + Remesh (8) RK2 scheme (particles advec.) remeshing with ⇤4,2 kernel

Adaptive time step (7) - 4th order centered FD (LCFL < 1)

Table 1: Time and space discretization methods used for the resolution of the viscous splitting VM algorithm
(eqs. (3) to (7)).

The fractional construction of this algorithm o↵ers a flexibility in the choice of the discretization
schemes of each step. The algorithm exposed in this work is one of the di↵erent existing remeshed
vortex algorithms in literature. We can cite for instance the remeshed vortex algorithms used
in [50] and [16], which di↵er from the present one by the nature of the remeshing kernel (⇤2,1

instead of ⇤4,2 here), by a tensorial approach for the advection/remeshing step (contrary to the
directional one proposed here), or by the use of a centered fourth-order [50] or second-order [16]
finite di↵erences scheme for the evaluation of the viscous term. In the algorithm established by
[22], the main di↵erence with respect to [50, 16] or the present one relies on the fact that the
remeshing operation is not performed every time step but only every 5 time steps (using a ⇤2,1

kernel, with a tensorial approach). This choice implies a particle-to-mesh and a mesh-to-particle
interpolation operation for the time steps where remeshing in not applied.
Providing the stability and consistency of all the numerical schemes used in each sub-steps,
remeshed Vortex method algorithms are proved to converge numerically as shown in the above
literature reference and as it will be highlighted in the next sections of this paper.

2.2. Lattice Boltzmann method
The Lattice Boltzmann method [24], used to perform fluid flow simulations, is not directly
based on the resolution of the Navier-Stokes equations but is a particular discretization of the
Boltzmann equation, describing the dynamics of gas:

@f(c,x, t)

@t
+ ci

@f(c,x, t)

@xi
=

✓
@f

@t

◆

coll

(12)

where f(c,x, t) is the distribution of particles density with a given velocity c at a given position
x at time t. The left hand side terms corresponds to the propagation (advection) of the particles
and the right hand side term represents the time evolution of the distribution function f due
to the collisions between particles. In this work, the collision between particles is given by the
BGK [29] collision operator which describes an average collision e↵ect through the relaxation to
a local equilibrium f

eq with a relaxation parameter ⌧ :

@f(c,x, t)

@t
+ ci

@f(c,x, t)

@xi
= �

1

⌧
(f � f

eq) (13)

In order to solve (13) numerically, one should restrict the velocity space to a discrete one. This
part is very important and gives the LBM its numerical originality. To perform this discretization,
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the standard Gauss quadrature is used and is detailed in [26]. The number of lattice points needed
to achieve a given dynamics is directly connected to this latter step and converts f(c,x, t) into
f(c↵,x, t) where ↵ denotes the discrete velocities indices. The usual 19 velocities lattice (D3Q19)
allows to recover the dynamics described by the 3D isothermal Navier-Stokes equations for small
Mach numbers. From this lattice, one could define an equilibrium function in its incompressible
polynomial form:

f
eq
↵ (x, t) = ⇢!↵ + ⇢0!↵

✓
u.c↵
c̃
2
0

+
(u.c↵)2

2c̃40
�

|u|
2

2c̃20

◆
(14)

where ⇢0 is a unity constant and the coe�cients !↵ and c̃0 are defined by:

8
>><

>>:

!↵ =
1

3
,

1

18
,

1

36
, ↵ = 0, ↵ = 1..6, ↵ = 7..18

c̃0
2 =

1

3

(15)

The macroscopic variables, ⇢,u are linked to the distribution functions f by their moments:

⇢ =
X

↵

f↵

⇢u =
X

↵

c↵f↵
(16)

Then, the final step to get the LBM algorithm is to perform a space and time discretization.
This is achieved by using the advective properties of the left-hand side of equation (13) which
can be integrated along the characteristic c↵ to get the following LBM algorithm:

8
<

:
g
coll
↵ (x, t) = g↵(x, t) �

dt

⌧g
(g↵(x, t) � g

eq
↵ (x, t))

g↵(x, t) = g
coll
↵ (x � c↵dt, t � dt)

(17)

where the g↵ distribution function comes from the integration step to get an explicit formulation
and is related to the distribution f↵ with the relation g↵ = f↵ + dt

2⌧ (f↵ � f
eq
↵ ) which implies

g
eq
↵ = f

eq
↵ and ⌧g = ⌧ + dt

2 .

From this, the algorithm imposes dt = dx = 1 in order to be consistent with a uniform grid
size imposed by the lattice. Then one could define some physical time and grid steps in order
to compute physical quantities from lattice quantities. This is done by introducing the physical
speed of sound c0 which defines:

�t =
c̃0�x

c0
(18)

where �x is the physical grid step obtained by discretizing a reference length scale L with a
given number of points N . Based on these parameters, the LBM algorithm can recover the
Navier-Stokes dynamics with a second-order accuracy in space and time.
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In the BGK collision operator, the distribution functions relax toward the equilibrium according
to a single relaxation time. A more sophisticated idea is to relax each moment according to a
proper relaxation time. This method is called multiple relaxation time (MRT) [30] and is known
to alleviate some stability issues encountered with the BGK operator. The implementation of
the MRT model is based on the modification of the collision step of equation (17) which is done
in the momentum space:

⇢
mcoll(x, t) = m(x, t) � S(m(x, t) � meq(x, t))
g(x, t) = M

�1mcoll(x � c↵dt, t � dt)
(19)

where the matrix M, transforms the distribution functions into moments:

m = Mg. (20)

M is a square transformation matrix. If the first line of the matrix is filled only by 1, then
the first moment is the density. The invert transformation from the moments to distribution
functions is simply g = M

�1m. Further details about the construction of the matrix M can
be found in [30]. The equilibrium moments are obtained from meq = Mgeq. The diagonal of
S corresponds to the inverse of the relaxation time, also called relaxation rate, associated with
each moment:

S = diag (0, s1, s2, 0, s3, 0, s3, 0, s3, s⌫ , s2, s⌫ , s2, s⌫ , s⌫ , s⌫ , s4, s4, s4)) (21)

where s⌫ is related to the fluid viscosity:

1

s⌫
= 3⌫ �

1

2
(22)

The other relaxation rates, s1, s2, s3 and s4 do not appear in the macroscopic equations and are
chosen according to stability optimization [51, 30] leading to s1 = 1.19, s2 = 1.4, s3 = 1.2, s4 =
1.98. The BGK operator is recovered if all the relaxation rates are the same.

Then the LBM algorithm used in this study will rely on equations (14), (16) and (19), imposing
the physical parameters with (18) and (22). It is to be noticed that other forms of the collision
operator are possible [36, 37, 52, 53, 54, 55, 56] but would give very similar results for the test-
cases considered in this study. Moreover, a high order formulation of eq. (14) could be adopted
to enhance stability issues [57] and to reach higher Mach numbers [58]. A detailed theoretical
comparison of the di↵erent collision models and their impact on the physics can be found in [41]
and [35]. Then, the massively used D3Q19 lattice with the MRT collision operator will serve as
the reference LBM model in the following comparisons.

2.3. Algorithmic comparison

In order to summarize the theoretical backgrounds exposed in the previous sections, the basic
steps of each algorithm are detailed in Table 2.

In order to compare this two di↵erent kind of methods, some important features should be
pointed out. The computed quantities of each method are basically di↵erent. Indeed, LBM
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Step LBM VM
Initialization (t⇤ = 0) Compute g↵ from ⇢ and u Compute ! = r ⇥ u from u

RHS update Collision from (19)-1 Stretching (4) and di↵usion of ! (5)
Advection Streaming from (19)-2 Particles advection + remeshing (8)

Macro state update Compute ⇢ and u from g↵ Compute u from ! (3)
and update (14)

Table 2: Comparison of the basic algorithmic steps for present LBM and VM methods.

computations compute the distribution functions and give direct access to density and velocity
whereas VM methods compute the vorticity and the velocity. Then because of the incompressible
nature of the VM, only velocity and vorticity will be compared in this study. The Mach number
of the LBM method will always be chosen to a low value and the equilibrium will be computed
with relation (14). Finally, it should be mentioned that the vorticity is not a native quantity in
the LBM algorithm and must be reconstructed. Then when a time evolution of the vorticity will
be needed in LBM computations, it will be reconstructed inside the algorithm with only second
order in space to preserve the global order of computation.

Then, it should be highlighted that a fine computational cost comparison is delicate to handle
in the present study. Indeed, these types of considerations are very dependent on the level of
implementation of the algorithms (pedagogic, academic, industrial, optimized) and should be
considered in a dedicated study. However, some basic features of the implementation can be
pointed out for each method (they will be confirmed in section 3.1 with Table 3 giving indicative
CPU-times for a well chosen test case). Concerning LBM, the classical implementation of the
algorithm is spread out into a local collision step which represents the main computational cost
and an advection step which is generally very fast due to the low stencil of the D3Q19 lattice.
The counterpart of this e�ciency is that the LBM timestep is generally limited by the grid
step, meaning that it should be low for high resolution. Concerning VM, the computational
time dedicated to the resolution of the advection/resmehing step is also rather fast due to the
directional splitting (successive resolutions of 1D problems in each spacial direction), as well as
the resolution of the Poisson equation and di↵usion (by using the optimized FFTW library). On
the other side, the resolution of the stretching equation and the evaluation of �tadapt represent
a non negligible part or the total computational time within one time step. However, the use of
such adaptive time step enables to significantly reduce the number of total iterations needed to
complete simulations, which leads to a net reduction of total computational time compared to
simulations based on classical CFL conditions.

3. Numerical dissipation

In this section some standard test-case computations will be performed to characterize the level
of numerical dissipation induced by each method. To investigate this kind of numerical char-
acteristics, the linear stability analysis (LSA) of the scheme could be a powerful and e�cient
theoretical tool. The LSA of the LBM has been the purpose of numerous studies [59, 31, 60].
The main conclusion of these studies relies on the low dissipation rate of the perturbative (or
acoustic) mode due to the mesoscopic nature of the method and a level of numerical dissipation
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for the vorticity mode comparable to 3rd order of macroscopic method such as finite-di↵erences.
Concerning remeshed Vortex methods, according to the authors knowledge, there is no LSA or
complete numerical analysis of convergence for fractional step algorithms like the one used in
this paper (cf Tab. 1) due to its heterogeneous aspect. However, it is important to mention the
theoretical studies carried out in the pure Langrangian framework of the Vortex methods: Hald
in 1979 [61] and then Beale and Majda in 1982 [62] proved the theoretical convergence of pure
Lagrangian Vortex methods in the context of the 2D Euler equations (inviscid flows). Later,
the time discretization was added in the convergence analysis of the 2D and 3D Euler equations
by Anderson and Greengard in 1985 [63]. Besides the existence of a theoretical convergence
analysis, a very interesting feature of Lagrangian Vortex methods relies on the fact that they
conserve many inviscid flow invariants. For the 2D Euler equations, Vortex methods guarantee
the conservation of 4 invariants, namely the total circulation, the linear and angular impulses as
well as the kinetic energy, as proved in [64]. The conservation properties of Lagrangian Vortex
methods ensure that they are naturally free of numerical dissipation which implies that, even
for underresolved simulations, they provide correct qualitative solutions. Concerning the semi-
Lagrangian aspect of the method and the particle remeshing, Cottet et. al [42] proved recently
the consistency and linear stability of the advection/remeshing scheme (eqs. (8)) with remeshing
kernels ⇤p,r until p = 8.

A relative comparison of the present LBM and remeshed VM on well-known test cases will
therefore give some insight on the numerical dissipation induced by these non fully macroscopic
methods.

3.1. Advection of a simple vortex

For this first test case, the simple and widely used Taylor vortex is investigated. Here, the con-
vection of a viscous vortex is used to characterize the e↵ects of each discretization strategies on
the dissipation of a simple coherent structure. For this test case, a periodic [L, L, L/4] domain
is used and the velocity field is initialized by equations (23) where r

2 = (x � x0)2 + (y � y0)2,
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Figure 1: Velocity and vorticity profiles of the convected Taylor vortex.

r0 = L/10 and Ut = U1/10. The LBM pressure is initialized so as to ensure the isotropic condi-
tion and avoid some spurious oscillations. This latter point is particularly discussed in dedicated
publications [65, 66]. The Taylor vortex has the particularity to be surrounded by a negative
vorticity region between r = r0 and r = 4r0. Moreover, the velocity profile has a compact form
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and reaches a very small value for r > 4r0 (Fig. 1). For this first comparison, all the numerical
parameters such as grid size and time-step will be the same for both LBM and VM. Then in order
to get rid of the peculiar normalization procedure of each method and for the sake of clarity,
the vortex will be defined in physical units. Thus, the characteristic dimensions are taken to
U1 = 34m/s and L = 1.28m. The Reynolds number based on r0 is set to 100 in order for the
di↵usion term to be e↵ective in the VM algorithm. Indeed, this test case is usually performed
in the inviscid form to get rid of the viscous dissipation and directly compare the numerical dis-
sipation. But for the present study, the numerical schemes are compared in the three presented
test cases with all the features described in Table 2. From these parameters, the grid size is set
to �x = L/N where N is the grid resolution and the time-step is chosen so as to enforce a CFL
number based on the upstream velocity CFL = U1

�t
�x = 1/

p
3 ⇡ 0.057 for both LBM and VM

models.
The center of the vortex is initially positioned at the center of the 3D periodic [L, L, L/4] do-
main and its convection is observed through a given number of domain crossings while the grid
resolution N ⇥ N ⇥ N/4 in the whole domain is varying from N = 16 to 256. Concerning the
present VM, since it is a semi-Lagrangian Vortex method, one recalls that at each time step of
the algorithm the particles are redistributed on the background grid nodes and then convected
in a Lagrangian way (cf eqs 8), thus implying that the total number of particles in the domain
is always equal to the underlying grid resolution.

The velocity and vorticity signals recorded in the center point of the domain are plotted on
Figures 2, 3 and 4 with respect to the normalized time t

? = tU1/L .
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Figure 2: Time evolution of the velocity norm at the center of the computational domain.

First of all, the convergence behavior is clearly di↵erent in VM and LBM. Indeed, from Fig-
ure 2, one can see that the coarse resolution underestimates the LBM velocity whereas it is
overestimated with VM. The LBM results exhibit a large dispersion for coarse resolution.
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Figure 3: Time evolution of the vorticity norm at the center of the computational domain.
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Figure 4: Time evolution of the vorticity norm at the center of the computational domain. Closer view of Figure
3

Then, it should be noticed that the LBM vorticity is a reconstructed quantity which explains that
the initial vorticity for the lowest resolution is slightly lower than the theoretical one because
of the second order reconstruction (see the solid blue curve at t

⇤ = 0 on Fig. 3). Thus the
vorticity level for the LBM results at the lowest resolution should be interpreted with this initial
reconstruction error. Then the first global results of Figure 3 clearly show a similar behavior
for LBM and VM results. The stronger di↵erence is observed for the lowest resolution where
the LBM results exhibit a higher numerical dispersion of the convected vortex, which is not at
the expected position. The close-up view of Figure 4 highlights that the VM vortex has less
dispersion for the overall resolutions.

The comparisons of the vortex shapes in Figure 5 confirm these observations by highlighting a
strong deformation of the LBM vortex for the lowest resolution after 2 domain-crossings (second
column of Fig. 5). Then the vortex dissipates and the limit of the negative vorticity ring reaches
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the end of the domain (last column of Fig. 5). We note that the vortex shapes obtained for both
methods with N = 256 do not show qualitative change compared to the case N = 128 and are
consequently not represented in Figure 5.
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Figure 6: Numerical dissipation of the velocity (left) and vorticity (right) norm, with respect to the numerical
wavenumber. The dashed line represents the theoretical dissipation rate of the vorticity mode [67] �⌫k2.

To take into account the overall results for both velocity and vorticity, the evolution of the
numerical dissipation with the numerical wavenumber is shown in Figure 6. This dissipation rate
G is estimated by averaging the norm of the desired quantity q during the period T = L/U1
and by computing the ratio between the last 2 periods and the first 2 periods:

Gq =

0

@
R 11T/2

9T/2 ||q(t)||dt

R 3T/2

T/2 ||q(t)||dt

1

A
1/4T

, (24)

where the intervals of time integration [T2 ,
3T
2 ] and [9T2 ,

11T
2 ] are graphically represented by vertical

dotted lines in Figure 2.
Figure 6 displays the evolution of Gu and G! (velocity and vorticity dissipation respectively)
against the numerical wavenumber k̃, which is computed by assuming from Figure 1 that the vor-
tex have a global wavelength of 8r0. As the grid resolutions vary among N = 16, 32, 64, 128, 256
they correspond to numerical wavenumbers respectively equal to:

k̃ = k�x =
2⇡

8r0
�x =

⇡

2N
5

= 0.491, 0.245, 0.123, 0.061, 0.031.

The observed dissipation have similar level for both methods with a slight trend for VM to better
propagate the low resolved vortex due to its low dispersion brought by the Lagrangian advection
step. For high resolved vortex, the numerical dissipation produced by both methods tends to
zero: the total dissipation of the solution tends to the physical viscous dissipation, as can be
seen on the right hand side of Figure 6 where a comparison of the numerical vorticity dissipation
with respect to the theoretical dissipation rate of the vorticity mode �⌫k

2 is given.

Table 3 gives indicative computational times, obtained respectively with LBM and VM for the
convected eddy test case. For the coarsest resolutions, namely N = 16, 32, 64, the data reported
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in the table correspond to the mean of the CPU-times obtained over 10 simulations. Both
algorithms have been compiled with the standard gfortran compiler with similar options. All
the simulations presented in this table have been performed on the same hardware with only 1
core (Xeon E7-8860 v4 2.2-3.3 GHz) for all the resolutions. The choice of a unique core allows
to carry out a comparison detached from any influence of the parallelization level of the two
associated codes (which, one recalls, have been developed independently). In terms of absolute
comparison between the LBM and VM CPU-times (in seconds), one can conclude from Table 3
that the present implementation of LBM is faster than the present implementation of VM by a
factor of 2 approximately for the finest resolutions. This can be explained by the two respective
algorithms themselves, where the ”RHS update” and ”Advection” steps contain more substeps
in VM than in LBM (see Table 2). However, for the reasons explained in section 2.3, these data
are to handle very cautiously and might be essentially considered as indicative.

Resol. N CPU-time LBM CPU-time VM
absolute (sec) normalized absolute (sec) normalized

16 0.276 1 1.80 1
32 3.12 11 (⇥ 11) 10.72 6 (⇥ 6)
64 53.57 194 (⇥ 17.5) 116.08 (⇠ 2 min) 65 (⇥ 11)
128 1176.26 (⇠ 20 min) 4262 (⇥ 22) 1921.40 (⇠ 32 min) 1070 (⇥ 16.5)
256 19112.48 (⇠ 5h 20 min) 69248 (⇥ 16) 36598.16 (⇠ 10h 10 min) 20378 (⇥ 19)

Table 3: Comparison of the CPU times required for LBM and VM approaches on the convected eddy test case
for the time range t⇤ 2 [0, 1]. All simulations are performed on a single processor and the CPU times are given
in absolute values (in seconds) and normalized according to the CPU-time associated to the N = 16 simulation.

3.2. Taylor-Green Vortex

In order to study the e↵ect of numerical dissipation on a fully 3D turbulent and highly docu-
mented test-case, the decaying Taylor-Green vortex (TGV) is now considered. It is a fundamental
benchmark used as prototype for vortex stretching and production of small-scale eddies which
therefore allows to study the dynamics of transition to turbulence. This test-case has been widely
used to study the dissipation errors of numerical schemes or the impact of collision operators in
LBM [68].

For this test-case, the simulations are performed on a 2⇡-periodic cubic domain ⌦ defined as
0  x, y, z  2⇡, with a Reynolds number equal to Re = 1600. The initialization of the Taylor-
Green vortex is done by setting velocity and pressure variables as follows:

8
>>>>>><

>>>>>>:

p = p1 +
⇢1U

2
1

16
[cos(2z) + 2][cos(2x) + cos(2y)]

ux = U1 sin(x) cos(y) cos(z)

uy = �U1 cos(x) sin(y) cos(z)

uz = 0

(25)

For the LBM simulation, a peculiar attention has to be made for the initialization of the distri-
bution functions when the initial velocity gradients are not negligible [69, 70].

16



In order to work with non-dimensional quantities, all the displayed quantities are normalized by
an arbitrary length scale L and velocity scale U1. From this the non dimensional time is defined
by t

? = tU1/L and the Reynolds number by Re = U1L/⌫.

3.2.1. Time step definition
For this benchmark, the time steps of each method are set di↵erently by taking advantage of
each algorithm. For VM, the adaptive time step is used whereas the LBM time step is fixed.
Thus, in contrast with the first test-case where both methods were set with the same CFL, this
benchmark will impose di↵erent CFL and will highlight the methods for a set of parameter nat-
urally used in the literature.

All the simulations realized for this test-case are performed in a t
?

2 [0, 20] time range. Di↵erent
grid resolutions, denoted N

3, will be studied, namely 643, 1283, 2563 and 5123. For LBM com-
putations, the time step is constant and defined by relation (18) (assuming that �x = 2⇡/N)
and then multiplied by U1/L to get dimensionless values. This definition gives the following
dimensionless time steps, with respect to the di↵erent resolutions : �t64 ⇡ 4.8 · 10�3

, �t128 ⇡

2.4 · 10�3
, �t256 ⇡ 1.2 · 10�3

, �t512 ⇡ 6.0 · 10�4.

Regarding the VM simulations, the time step is adaptive, based on relation (7), namely �t
n
LCFL 

LCFL

kruk1
with LCFL < 1. More precisely, in these TGV computations, the global adaptive time

step chosen all along VM simulations is defined by :

�t
n
adapt = min(�t

n
CFL, �t

n
LCFL) = min

✓
CFL · �x

kukn
1

,
LCFL

krukn
1

◆
(26)

where n denotes the current iteration and where �t
n
CFL refers to the classical Eulerian stability

condition based on the grid size �x. In the following TGV simulations, the values of CFL and
LCFL numbers will be respectively set to CFL = 0.1 and LCFL = 1/32. The left handside of
Figure 7 shows the temporal evolution this adaptive time step along VM simulations depending
on the di↵erent grid resolutions under study. For each resolution, one can clearly distinguish
between t

? = 2.5 and t
? = 5 the switch from the CFL stability condition to the LCFL one.

The evolution of �t
n
adapt follows the flow dynamics and shows minimum values in the time range

corresponding to the peak of energy dissipation, at t
?

⇡ 9 (see next subsection for a clear
observation of this peak).

For purpose of comparison, the table located on the right hand-side of Figure 7 reports the
number of time steps required respectively in LBM and VM computations to perform a TGV
simulation until t

? = 20. In LBM, since �t is governed by a CFL condition, the number of total
time steps is successively multiplied by 2 when increasing the grid resolution. In VM, it can be
noticed that, when �tadapt is driven by the LCFL condition, its value at a given resolution is
not divided by two with respect to the previous coarser resolution (as it is the case when the
CFL condition governs). This can be explained by the fact that the LCFL condition is based
on velocity gradients, not on grid step. Thus, the finer is the grid resolution, the better is the
evaluation of these gradients and higher is the gain in terms of total time steps.
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Grid # time # time
resolution steps LBM steps VM

643 4153 4411
1283 8306 7395
2563 16612 10849
5123 33224 15324

Figure 7: (Left) Temporal evolution of the adaptive time step along VM simulations depending on grid resolution.
(Right) Comparison of number of time steps required to achieve a TGV simulation until t? = 20 between LBM
and VM.

3.2.2. Time evolution of kinetic energy
This subsection is dedicated to the study of the temporal evolution of the kinetic energy E =
1

2

Z

⌦

kuk
2
d⌦, the kinetic energy dissipation rate " = �

dE

dt
and the enstrophy Z =

1

2

Z

⌦

k!k
2
d⌦.

Note that the kinetic energy decays proportionally to enstrophy and " and Z are linked by the
following relation : " = �

dE
dt = 2⌫Z, where ⌫ denotes the kinematic viscosity of the fluid.

For VM computations, the energy dissipation rate " is reconstructed a posteriori using a second
order time integration scheme (" = �

(E(t+m�tadapt)�E(t�m�tadapt)
2m�tadapt

), where m is chosen to be equal

to 3 in this study to prevent from spurious oscillations. For LBM calculations, the enstrophy Z

is computed from the vorticity for which a second order reconstruction is used.

Figures 8, 9, 10 respectively show the temporal evolution of E, " and Z for LBM (left) and VM
(right) for di↵erent grid resolutions. The results are compared to the spectral solution at 5123,
taken as the reference solution [71]. As can be seen, both LBM and VM converge towards the
reference solution, for each physical quantity. In particular, both approaches correctly recover
the peak of energy dissipation as well as the peak of enstrophy reached at t

?
⇡ 9 (Figs. 9, 10).

However, this convergence behaves in a di↵erent way : with LBM, the simulation results converge
from ”bottom to top” towards the reference, which illustrates the numerical dissipation brought
by the Lattice Boltzmann method. From the 5123 grid resolution, the numerical di↵usion of
E and " becomes negligible (cf Figs. 8, 9) and the LBM solution reaches the spectral solution
with an error of 10�6, as can be seen on the grid convergence curves, Figure 11, which represent
the L

2-norm errors of the physical quantities based on the spectral solution on the time range
t
?

2 [0, 20]. As regards enstrophy, which is a second-order-reconstructed quantity in LBM, the
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Figure 8: Kinetic energy decay for Taylor-Green vortex benchmark between t? = 0 and t? = 20. (Left) LBM,
(Right) VM.
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Figure 9: Time evolution of kinetic energy dissipation rate " = �
dE
dt for Taylor-Green vortex benchmark between

t? = 0 and t? = 20. (Left) LBM, (Right) VM.
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convergence order is, as expected, close to 2 (cf Figs 10 and 11). However the final enstrophy error
reached with the finest mesh remains in the order of 10�3. For the coarse resolution, the LBM
solution is over-dissipated by the grid and the chosen collision model (MRT), despite its ability
to get stable simulation on coarse grids, still overestimates molecular viscosity when grid step is
large. A detailed comparison of LBM collision models on the Taylor-Green vortex benchmark
could be found in [68].
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Figure 11: Grid-convergence study for Taylor-Green vortex benchmark between t? = 0 and t? = 20. The L2-norm
errors of kinetic energy (left), kinetic energy dissipation rate (center) and enstrophy (right) with respect to the
spectral solution are plotted against the grid step.

Concerning VM, one can observe on Figures 8, 9, 10 a convergence of the solutions from ”top to
bottom” and, more specifically, Figures 9 and 10 reveal that VM tend to slightly over-estimate
the enstrophy for under-resolved simulations (this phenomenon is shown and proved in [72] and
can be explained by the antidi↵usion mechanisms embedded in the error resulting from the
reconstruction of particle velocity in Vortex methods). As pointed out in the previous section
dealing with the convected eddy, VM is a low dissipative method and even for highly under-
resolved simulations (i.e 643) it manages to provide a rather correct time-evolution of energy
decay (Fig. 8) and enstrophy (Fig. 10). At the 5123 resolution, VM reaches the spectral
solutions with the same ranges of error than LBM, except for the " quantity (cf center of Fig.
11), which is only reconstructed at the first order in the present remeshed Vortex method.
Nevertheless, one can globally observe that the VM convergence order is lower than the one of
LBM, regardless of the quantity studied (cf Figs 11). In particular, the enstrophy convergence
order achieved with VM (approx 1.43) is slightly lower than LBM (approx 1.76) whereas the
vorticity !, involved in the enstrophy, represents the primary quantity solved by Vortex methods.
On one side, as mentioned in section 2.1, the heterogeneous construction of the fractional VM
algorithm o↵ers a flexible framework to design arbitrarily a semi-Lagrangian numerical method,
based on previous theoretical works, but on the other hand this heterogeneity makes the a priori
determination of the global order of the method delicate. Numerically, the global order of the
VM grid-convergence turns out to be a bit less than 2, despite the use of 4th order or spectral
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schemes (cf Tab. 2). Some elements like the linear interpolation of the particle velocity in the
Lagrangian transport or the first order evaluation of the integral quantities E and Z can explain
this behavior.

3.2.3. Spectral analysis
Figure 12 shows turbulent kinetic energy spectra obtained with LBM (left) and VM (right).
These spectra are plotted at t

? = 12 in order to study the energy cascade throughout the di↵erent
spatial scales at a time when the turbulent flow is developed. Note that the ”wavenumber” label
on the x-axis refers to the mean over the unit sphere of all the wavenumbers (kx, ky, kz), that is

to say to the quantity |k| =
q

(k2
x + k2

y + k2
z). For both methods, a cuto↵ has been applied to

the spectra below the cuto↵ wavenumber corresponding to the smallest resolved scale (vertical
dotted lines). One can notice that for the coarsest resolution 643, LBM slightly overestimates
the kinetic energy in the resolved scales, while the opposite behavior is observed for VM. This
confirms the results depicted in Figure 8.

Figure 12: Turbulent kinetic energy spectrum for Taylor-Green vortex benchmark at t? = 12. (Left) LBM.
(Right) VM. Vertical doted lines refer to the cuto↵ wavenumbers associated to the smallest resolved scales.

If we now consider the spectra at resolution 2563 and 5123, the energy cascade in the inertial
range seems converged for both method. In the dissipation range, it can be seen that LBM tends
to dissipate more energy when going towards the cuto↵ wavenumber, which confirms the remark
formulated before, stating that VM is globally less dissipative than LBM.

3.2.4. Flow structures
This last subsection relies on a qualitative comparison between the vortical structures obtained
in the LBM and VM solutions. Figures 13 and 14 respectively show the vorticity and velocity
norm of the flow field in the symmetric and periodic half-plane x = ⇡, at t

? = 9 with a 5123

resolution. As can be seen, at this resolution, the flow structures are significantly comparable
between LBM and VM.

An enlargement of the main vortical pattern (delimited by the dotted square in Figures 13 and
14) is proposed in Figure 15, and despite little discrepancies about the vorticity (left) and velocity
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Figure 13: Isocontours of vorticity norm at time t? = 9 and at levels 1, 5, 10, 20, 30 obtained with a 5123 resolution
on the periodic and symmetric half-plane x = ⇡. (Left) LBM. (Right) VM.

Figure 14: Isocontours of velocity norm at time t? = 9 and at levels 0.1, 0.2, 0.4, 0.6, 0.8, 1 obtained with a 5123

resolution on the periodic and symmetric half-plane x = ⇡. (Left) LBM. (Right) VM.

(right) norms, both methods manage to correctly take into account the small scales of the flow.
In particular it is interesting to look at the vorticity isocontours into more details since they
bring most of the crucial information of the Taylor-Green flow. Indeed, at t

⇤ = 9 the energy
dissipation reaches its maximum (cf Fig. 9) and the coherent structures of the flow start to be
destroyed, leading to the development of the turbulent flow. On Figure 13, the phenomenon
of rupture of the main vortical structures is clearly observable and very similar for LBM and
VM. More precisely, on the left hand-side of Figure 15 one can see that both method manage
to recover the regions of the flow corresponding to vortex tubes (thin elongated structures on
the right) which are associated to strong vorticity and small scales, as well as the sheet-like
structure (large ”eye-like” structure on the left) that is associated to strong energy dissipation.
The few discrepancies existing between the two solutions mainly rely on a little spacial shifting,
rather than a capacity of catching the tears of the small scale vortex tubes or the contours of
the sheet-like structure.

4. Flow past a solid cube

The last test case proposed in this paper is the flow past a 3D cube fully immersed in the fluid,
for di↵erent regimes. It aims at providing to the present list of benchmarks a significant test
where the treatment of no-slip boundary conditions is investigated and compared for both LBM
and VM methods in the proper methodological context where they are usually applied. First
of all, it has to be noted that, to the authors knowledge, the flow past a 3D cube test-case has
been subject to rather few number of experimental or numerical studies compared to the case
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Figure 15: Isocontours at time t? = 9 with a 5123 resolution on the plane x = ⇡. (Left) Superimposition
of isocontours of vorticity norm at levels 1, 5, 10, 20, 30 obtained with LBM (red) and VM (black). (Right)
Superimposition of isocontours of velocity norm at levels 0.1, 0.2, 0.4, 0.6, 0.8, 1 obtained with LBM (red) and VM
(black).

of flow past a surface-mounted cube or flow past a sphere. It therefore represents an interesting
non-usual benchmark for the present study, characterized in particular by the sensitivity of the
numerical results to the sharp corners of such blu↵ body. Two di↵erent flow regimes will be
handled in this study to directly compare the e↵ects of wall treatment for both methods. The
first chosen regime is at Re = 290, which corresponds to an unsteady and planar symmetric flow
[73]. The second regime of study is at Re = 570, where no symmetry is observed in the wake
and for which the flow becomes fully unsteady [73, 74].

4.1. Boundary conditions

4.1.1. Vortex Method framework
The approach used in the present remeshed VM method to handle the no-slip boundary condition
at the solid cube interface is the Brinkman penalization method. The latter, firstly proposed by
[75] and further developed by [76, 77], is part of the immersed boundary methods. It consists in
extending the fluid velocity inside the body and then to penalize it through an extra term in the
Navier-Stokes equations. This penalization term, added as a forcing term, models the no-slip
boundary conditions and is driven by a penalization factor, which can be related to the e↵ective
porosity of the body. Such approach is therefore fully compatible with the use of FFT-based
evaluations for the computation of the velocity field (see eq. (9)), for any type of body geometry.
The Brinkman penalization method has been widely used in the context of semi-Lagrangian
Vortex methods dealing with complex body geometries, because of its e�ciency and simplicity
[16, 18, 78, 79, 80]. For the computation of the drag and lift forces, VM simulations use the so
called momentum change approach based on [81] which gives the force acting on the wall surface.
Some other approaches may also be used to compute the aerodynamic forces in the context of
vortex methods with Brinkman penalization [79], where a Poisson equation is solved to evaluate
the pressure field from the velocity. Concerning the output boundary conditions, the present
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VM method uses periodic boundary conditions. In order to prescribe the desired uniform flow at
the inlet as well as proper outlet conditions, an absorption region is added at the outlet (cf the
following subsection 4.2). Then a correction of the velocity field has to be performed in order to
recover the desired flux at the inlet and to ensure a non-zero circulation in the computational
domain. We refer the reader to [78] for further details about these aspects.

4.1.2. Lattice Boltzmann framework
For the lattice Boltzmann simulations, the inflow boundary conditions are set through the equi-
librium distribution function by imposing a uniform streamwise velocity at the inlet and the
outflow boundary conditions imposes a conservation of the non-equilibrium distribution func-
tions at the outlet [82]. A sponge zone is used to increase the viscosity at the outlet and damp
the outgoing structures. The shape of the sponge zone is the same as for VM and is described
in the next subsection. For the computation of forces, the pressure is directly integrated on each
elementary surface and projected in each direction to get the normalized coe�cients of Tables 5
and 6. The no-slip condition is imposed with the non-equilibrium bounce-back condition which
corrects the wall output non-equilibrium distributions with their symmetric counterpart from the
wall normal direction [83, 84]. The treatment of no-slip boundary condition with bounce-back is
not the only possibility [85] but could be considered as a standard and e�cient way to investigate
no-slip conditions on Cartesian geometries.

4.2. Numerical setup

The study of the flow past a 3D cube is performed for both methods on a uniform Cartesian grid
by imposing a number of n grid points along the cube length D. The size of the computational
domain is defined in terms of the cube length and set to [�Lu, Ld]⇥[�H/2, H/2]⇥[�H/2, H/2].
The associated blockage ratio, BR, is defined as the ratio of the cube length and the domain
cross-section, i.e. D/H

2. The center of the cube is located at the origin (x, y, z) = (0, 0, 0) of the
domain. The reference values U1 and D are set to unity such that the grid step is defined by
h = D/n. The di↵erent grid parameters considered in the cube simulations are summarized in
Table 4, depending on the Reynolds number, and a schematic representation of the computation
domain is given in Figure 16.

n Nx Ny Nz h Domain BR
Re = 290

25 320 128 128 0.04 [�2, 10.8] ⇥ [�2.56, 2.56] ⇥ [�2.56, 2.56] 3.81%
50 640 256 256 0.02 [�2, 10.8] ⇥ [�2.56, 2.56] ⇥ [�2.56, 2.56] 3.81%

Re = 570
80 1024 512 512 0.0125 [�2, 10.8] ⇥ [�3.2, 3.2] ⇥ [�3.2, 3.2] 2.44%

Table 4: Grid parameters used for the cube simulation at Re = 290 and Re = 570 for both LBM and VM.

For both LBM and VM methods, a sponge zone is added at the outlet of the domain D to
prescribe the absorbing boundary condition. The absorption is performed according to the
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Figure 16: Computational domain, including the outlet sponge zone, for flow past a 3D cube.

following one-dimensional smoothing function f defined in the flow direction (i.e. x-direction):

f(x) =

8
>>><

>>>:

1 if x < xb

tanh(↵(x � xc)) � tanh(↵(xe � xc))

tanh(↵(xb � xc)) � tanh(↵(xe � xc))
if xb  x  xe

0 if x > xe

(27)

where xb, xc and xe respectively refer to the beginning, the center and the end of the absorption
band at the outlet. The parameter ↵ allows to adjust the steepness of the absorption function
f . In both LBM and VM approaches, one sets ↵ = 10, xb = Ld � D and xe = Ld (width equal
to 1D), which accounts for less than 8% of the total size, and thus of the total computational
cost. A uniform velocity field u1 = (ux1, uy1, uz1) = (U1, 0, 0) = (1, 0, 0) is set at the inlet of
the domain. In order to trigger the instability in a similar way for both methods, a perturbation
is applied during the simulation between t

? = 3 and t
? = 4 on the y component of the velocity,

defined by uy1 = 0.1 sin(⇡(T � 3)). For LBM, the time-step value is defined by (18) imposing
a CFL number based on U1, equal to 0.1, and for VM, the time step is adaptive, according to
relation (26), taking CFL= 0.5 and LCFL= 0.125.

Two Reynolds numbers are investigated here, Re = 290 and Re = 570. One notices that the aim
of this section is not to carry out an exhaustive study of the physics related to this type of flows,
but rather to compare the behavior of two numerical methods based on the same geometrical
setup with boundary conditions usually applied in their proper computational context.

4.3. Results and discussion

Let us first investigate the results for the flow around a cube at Re = 290. As reported in Table 4,
at this regime the simulations are performed for both methods at 2 grid levels, namely with n = 25
and n = 50. The simulations are realized on a total characteristic time of t

⇤ = tU1/D = 150.
The mean quantities are averaged during the period from t

⇤ = 50 to the end of the simulation.
Figure 17 shows the norm of the mean velocity components. The solutions at the two grid levels
are represented in the two orthogonal planes in the streamwise direction of the flow, namely
the XZ and XY planes. These results on mean flows are complemented by Figure 18, giving the
associated streamwise velocity profiles along x and y direction. The first observation that one can
make from these two figures, is that both LBM and VM methods reach with n = 50 the planar
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symmetric flow in XZ plane, as expected and reported in literature [73, 74]; indeed, on Figure
17b the mean flows in XZ plane clearly show a symmetry with respect to the centerline of the
wake and the non-planar symmetric wakes in XY plane exhibit comparable isocontours and more
specifically a qualitatively similar ex-centred recirculation zone downstream. On Figure 18-right,
the z-profiles of both methods for n = 50 (solid lines) are also distinctly symmetric. What is also
interesting to notice, is the way the two methods converge to the planar symmetric flow state:
as also highlighted in the two previous test cases of this paper, VM achieves better results at
coarser grid resolution than LBM which fails at n = 25 in computing a planar symmetric flow
for the same grid configuration (see XZ planes on Fig. 17a and the dotted curves on Fig. 18).
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Figure 17: Flow past a cube at Re = 290. Norm of the mean velocity components (
q
ux

2 + uy
2 + uy

2) in XZ

(top) and XY (bottom) planes for LBM (left) and VM (right). Levels correspond to 20 equispaced values between
0 and 1.4 included.

If we now focus more precisely on the mean velocity profiles in Figures 18, one can observe a
velocity di↵erence on Figure 18-left where the VM inlet velocity appears to be slightly lower than
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Figure 18: Average streamwise velocity profiles for flow past a cube at Re = 290. (Left) Along streamwise
direction at y = 0 and z = 0. (Right) Along spanwise direction at x = 0 and y = 0.

the expected far-field velocity, correctly restored by LBM. As a consequence, the levels of Figure
17 are noticeably di↵erent in the inlet region for the two methods. These discrepancies may be
explained by the velocity correction performed in VM in order to account for non-periodic flow
in the domain. This correction prescribes the uniform inlet flow rate with an error compared to
the theoretical one based on the desired inlet velocity field (u1 = (1, 0, 0)). However, despite
these di↵erences close to the domain walls, it is interesting to see that the solution close to the
solid boundaries is comparable for LBM (with bounce-back conditions) and VM (with Brinkman
penalization method), which highlights the ability of both methods to treat correctly no-slip
boundary conditions. Among the di↵erences in the obstacle region, one can first remark that
VM results exhibit a slightly thicker recirculation zone induced by a larger detached flow region
near the wall. This is more visible on Figure 18-right where the VM velocity profile is larger
than LBM in the z-direction. Moreover, one can concentrate on the x/D = [�0.5, 0.5] and
z/D = [�0.5, 0.5] regions in Figure 18, corresponding to the solid cube. At the extremities of
these regions, that is to say at the cube surface, the mean velocity profiles of LBM indicate a 0
value which corresponds to the direct prescription of no-slip boundary conditions in the bounce-
back approach. On the other hand, the profiles obtained with VM indicate that the velocity does
not completely vanish inside the solid cube and at its surface. These non-zero values correspond
to the Brinkman penalization model adopted in the present VM method, which consists, at each
time step, in allowing the flow to enter the solid obstacle and then to penalize it by considering
it as an extremely low permeable region according to a penalization coe�cient, denoted �. The
�-convergence of the Brinkman penalization to real no-slip boundary conditions (u = 0), is of
order 1 [19]. The ability of both methods to correctly handle the boundary conditions, and
thus the flow physics, is also confirmed by Figures 19 where are depicted the norm of the mean
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velocity component for flow past a cube at Re = 570. As reported in literature [74], the flow at
such regime is unsteady and the wake does not show any symmetry, which is the result observed
on Figures 19 and 20.
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XZ (top) and XY (bottom) planes for LBM (left) and VM (right) (same isocontour levels as Fig. 17).
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Figure 20: Average streamwise velocity profiles for flow past a cube at Re = 570. (Left) Along streamwise
direction at y = 0 and z = 0. (Right) Along spanwise direction at x = 0 and y = 0.

To complement the flow analysis, the two methods are compared in terms of instantaneous
vorticity fields in Figure 21. This figure shows the close-up view of the !z isocontours for three
di↵erent resolutions at Re = 570 in the XY plane near the solid walls, at t

⇤ = 120. The interest
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of such view is to focus the comparison on the boundary layer region where the flow is laminar,
rather than the wake region which is turbulent and whose analysis at a given time t

⇤ strongly
depends on the perturbation trigger. One can observe on this figure that the boundary layer
thickness as well as the region of detachment points, located around downstream corners, are
very similar between LBM and VM. The main discrepancy occurs at the upstream cube corners,
where the di↵erent boundary conditions adopted by the two methods induce di↵erent levels of
spurious vorticity at these sharp edges. However, the spurious solution in this region turns out
to be attenuated for both methods when refining the mesh; with n = 80 the thickness and shape
of the upstream boundary layer are very comparable.
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Figure 21: !z vorticity isocontours for flow past a cube at Re = 570 at t? = 120. Levels correspond to 10
equispaced values between -10 and 10 with additional contours at ±0.5 and ±0.25, where dashed lines represent
negative values. Top(red) LBM and Bottom(Black) VM.

Regarding the evaluation of flow characteristics, Tables 5 and 6 report the mean drag, lift and
side-lift coe�cients (c̄D, c̄L, c̄S), the recirculation length (lr) and the Strouhal number (St =
fD/U1) obtained at Re = 290 and Re = 570 by LBM and VM as well as those of selected
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references in literature. Concerning the recirculation length, it is defined as the axial distance,
along the centerline of the wake, between the center of the cube and the point where the mean
streamwise component of the velocity is zero. First of all, it has to be noted that the cube
benchmark is not as widely studied in literature as the sphere benchmark, which explains the
rather few quantity of reference works about such flow. In terms of flow physics, and as explained
in [74], it is important to mention that the values of c̄D for sphere and cube di↵er as the Reynolds
number increases: once the Reynolds number has reached the unsteady and planar-symmetric
regime (ie Re & 276), the c̄D for cube increases with the Reynolds number, contrary to the one
of the sphere. One can see in Table 5 (Re = 290) and Table 6 (Re = 570) that this statement
is verified both by LBM and VM. In terms of comparison, in Table 5, the c̄D results of LBM
and VM are in good accordance with the evaluations of Haider & Levenspiel [86]. On the other
hand, the results of Saha [73] and Khan et al. [74] predict a lower drag coe�cient. Concerning
the Strouhal number at Re = 290, the LBM and VM results are rather close to the experimental
result of Klotz et al. [87], standing around 0.12, whereas the values reported by Saha and Khan
et al. are lower than 0.1. These di↵erences can be explain by the di↵erent numerical setup used
in the studies with respectively 30 and 20 points along the cube for Saha and Khan et al. and
on the other hand a di↵erent blockage ratio of the computational domain; indeed, the present
BR for simulations at Re = 290 is equal to 3.81% against 0.44% in Khan et al. simulations and
0.51% for Saha. The present BR is closer to the one of Klotz et al. (1.44%) which may explain
the closer results in terms of Strouhal number.
It has also to be noted that both LBM and VM methods recover a quasi-zero c̄S value at
Re = 290, which is consistent with the fact that the wake is symmetric in the XZ plane at such
regime. The sign of the lateral and side lift coe�cients has been removed due to the arbitrary
asymmetry direction chosen by the flow. Indeed, the asymmetry balance can change due to
infinitesimal computing artefacts without altering the flow behavior and topology. Finally one
can note that the recirculation length is slightly lower for LBM results. Indeed, the profiles of
Figure 18-left show that the LBM mean streamwise velocity in the recirculation area starts to
increase earlier than in the VM results. As mentioned previously, this could be an e↵ect of the
prescribed inflow/outflow boundary conditions for the two methods.

c̄D c̄L c̄S lr St

Saha [73] 0.783 0.064 0.0 - 0.094
Klotz et al. [87] - - - 2.63 0.128 (Re = 292)
Khan et al. [74] 0.83 0.0053 0.01646 2.50 0.098 (Re = 300)

Haider & Levenspiel [86] 1.08 - - - -
Present LBM n = 25 1.093 0.136 0.039 2.20 0.120

n = 50 0.900 0.073 4.31 · 10�4 2.50 0.120
Present VM n = 25 0.985 0.066 0.0041 2.64 0.120

n = 50 1.003 0.088 8.14 · 10�5 2.72 0.120

Table 5: Comparison of mean force coe�cients, mean recirculation length and Strouhal number for flow past a
cube at Re = 290.
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c̄D c̄L c̄S lr

Khan et al. [74] 0.91 0.0576 0.103 -
Haider & Levenspiel [86] 1.14 - - -

Present LBM (n = 80) 1.121 0.005 0.011 3.13
Present VM (n = 80) 1.014 0.003 0.013 3.26

Table 6: Comparison of mean force coe�cients, mean recirculation length for flow past a cube at Re = 570.

5. Conclusion

In this work an algorithmic and numerical comparative study of a Lattice Boltzmann Method
(LBM) and a remeshed Vortex method (VM) was presented in the context of three dimensional
incompressible flows. Both approaches belong to families of methods where the flow is not con-
sidered and discretized in a macroscopic way and where the notion of particles is a common
aspect. In Lattice Boltzmann Methods, the local algorithms and low stencil schemes (lattice)
contribute to their e�ciency and allow one to easily implement and parallelize them. Regarding
semi-Lagrangian (remeshed) Vortex methods, they couple optimally Lagrangian and Eulerian
schemes in a fractional step algorithm, which contributes to their flexibility and specificity. In
particular, the Lagrangian treatment of the advection term enables the use of an adaptive �t,
thus reducing the total number of time steps within a whole simulation.
The two methods were compared with respect to each others and validated with other experi-
mental/numerical results in literature for three reference test cases: the advection of a simple
vortex, the Taylor Green vortex and the flow around a cube in a free domain. The first ob-
servation for the first two benchmarks was the low dissipative and dispersive behaviour of the
present remeshed Vortex method, especially for coarse grids, which o↵ers better results for low
resolutions. The second main observation relies on the fact that the present LBM o↵ers a better
accuracy at fine grid resolutions and a higher order of convergence, which also aligns with the
conclusions already made in the literature as previously described.
For the cube test case, which is a sti↵ numerical problem with sharp edges and singularities,
both LBM and VM were used with their own boundary conditions in order to illustrate a typical
use of both algorithms in the context of a more complex and applied benchmark. Once again,
the ability of VM to better compute the expected flow behavior on coarse grids was confirmed.
For higher resolved grids the results of both methods show a good qualitative agreement, the
quantitative discrepancies being mainly due to the di↵erent treatment of inlet/outlet and no-slip
boundary conditions within the two methods.

All the results presented in this study should be interpreted in the specific context of the chosen
models, which have been mostly tested and compared in terms of global and integral quanti-
ties. Even if some improved versions of these models exist in literature, a deeper analysis of
local behaviors should increase the understanding of each item of the two presented approaches.
Furthermore, in order to fully take advantage of the intrinsic performances of each method, a
hybrid algorithmic implementation should be considered as a target for future developments in
the framework of this family of numerical methods.
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[31] S. Marié, D. Ricot, P. Sagaut, Comparison between lattice boltzmann method and navier-
stokes high order schemes for computational aeroacoustics., J. Comput. Phys. 228 (2009)
1056–1070.

[32] Y. Peng, W. Liao, L.-S. Luo, L.-P. Wang, Comparison of the Lat-
tice Boltzmann and pseudo-spectral methods for decaying turbulence:
Low-order statistics, Comp. & Fluids 39 (2010) 568 – 591. URL:
http://www.sciencedirect.com/science/article/pii/S0045793009001546.
doi:https://doi.org/10.1016/j.compfluid.2009.10.002.

[33] J. Sterling, S. Chen, Stability analysis of Lattice Boltzmann methods, J. Comput. Phys.
123 (1996) 196–206.

[34] C. David, P. Sagaut, Structural stability of Lattice Boltzmann schemes, Physica A 444
(2016) 1–8.

[35] C. Coreixas, G. Wissocq, B. Chopard, J. Latt, Impact of collision models on the physical
properties and the stability of lattice boltzmann methods, Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences 378 (2020) 20190397.
URL: http://dx.doi.org/10.1098/rsta.2019.0397. doi:10.1098/rsta.2019.0397.

[36] M. Geier, M. Schönherr, A. Pasquali, M. Krafczyk, The cumulant lat-
tice boltzmann equation in three dimensions: Theory and validation, Com-
puters and Mathematics with Applications 70 (2015) 507 – 547. URL:
http://www.sciencedirect.com/science/article/pii/S0898122115002126.
doi:https://doi.org/10.1016/j.camwa.2015.05.001.

[37] J. Latt, B. Chopard, Lattice Boltzmann method with regularized pre-collision distribution
functions, Mathematics and Computers in Simulation 72 (2006) 165–168.

[38] F. Tosi, S. Ubertini, S. Succi, H. Chen, I. Karlin, Numerical stability of Entropic versus
positivity-enforcing Lattice Boltzmann schemes, Mathematics and Computers in Simulation
72 (2006) 227–231.

[39] P. Lallemand, F. Dubois, Some results on energy-conserving lattice Boltzmann models,
Computers and Mathematics with Applications 65 (2013).

34



[40] F. Dubois, B. Graille, S. R. Rao, A notion of non-negativity preserv-
ing relaxation for a mono-dimensional three velocities scheme with rel-
ative velocity, Journal of Computational Science (2020) 101181. URL:
http://www.sciencedirect.com/science/article/pii/S1877750320304828.
doi:https://doi.org/10.1016/j.jocs.2020.101181.

[41] C. Coreixas, B. Chopard, J. Latt, Comprehensive comparison of collision models in the
Lattice Boltzmann framework: Theoretical investigations, Phys. Rev. E 100 (2019). URL:
http://dx.doi.org/10.1103/PhysRevE.100.033305. doi:10.1103/physreve.100.033305.

[42] G.-H. Cottet, J.-M. Etancelin, F. Perignon, C. Picard, High order semi-lagrangian particles
for transport equations: numerical analysis and implementation issues, ESAIM: Mathemat-
ical Modelling and Numerical Analysis 48 (2014) 1029–1064.

[43] A. Magni, G.-H. Cottet, Accurate, non-oscillatory remeshing schemes for particle methods,
J. Comput. Phys. 231(1) (2012) 152–172.

[44] G.-H. Cottet, P. Poncet, Advances in direct numerical simulation of 3D wall-bounded flows
by Vortex-In-Cell methods, J. Comput. Phys. 193 (2003) 136–158.

[45] D.-G. Caprace, T. Gillis, P. Chatelain, FLUPS - a Fourier-based library of unbounded
Poisson solvers, SIAM Journal on Scientific Computing 43 (2021) github.com/vortexlab–
uclouvain/flups.

[46] R. Yokota, T. Narumi, R. Sakamaki, S. Kameoka, S. Obi, K. Yasuoka, Fast multipole
methods on a cluster of GPUs for the meshless simulation of turbulence, Comp. Physics
Comm. 180(11) (2009) 2066–2078.

[47] D. Rossinelli, B. Hejazialhosseini, W. M. van Rees, M. Gazzola, M. Bergdorf, P. Koumout-
sakos, MRAG-I2D: Multi-resolution adapted grids for remeshed vortex methods on multicore
architectures, J. Comput. Phys. 288 (2015) 1–18.

[48] G. Novati, S. Verma, D. Alexeev, D. Rossinelli, W. van Rees, P. Koumoutsakos, Synchro-
nisation through learning for two self-propelled swimmers, Bioinspir. Biomim. 12 (2017)
036001.

[49] P. Koumoutsakos, Multiscale flow simulations using particles, Ann. Rev. Fluid Mechanics
37 (2005) 457–487.

[50] W. M. Van Rees, A. Leonard, D. Pullin, P. Koumoutsakos, A comparison of Vortex and
pseudo-spectral methods for the simulation of periodic vortical flows at high reynolds num-
bers, J. Comput. Phys. 230(8) (2011) 2794–2805.

[51] Lallemand, P. and Luo, L.S., Theory of the lattice Boltzmann method: Dispersion, dissipa-
tion, isotropy, Galilean invariance and stability, Phys. Rev. E 61(06) (2000).

[52] T. Février, Extension et analyse des schémas de Boltzmann sur réseau : les schémas à vitesse
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