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Abstract

In this work, we would like to understand how a porous coating present on the surface
of a solid obstacle modifies the flow dynamics. To do so, we use the linear stability
analysis tool that allows us to see how the more important physical quantities of
the flow are modified. In particular, in this thesis, we focus on the linear stability
of the flow past a 2D porous square cylinder.
To take into account the porous layer in the mathematical model of the flow has
been chosen the Brinkman Navier-Stokes equations. This is a very simple physical
model because allows us to have different media in the whole domain only varying
the value of the dimensionless penalization parameter λ. However, this model is
valid only when the porosity of the porous medium is close to one (Φ ' 1).
All the simulations are performed with the spectral elements code Nek5000. The
results for the flow past a solid-porous obstacle obtained by Nek5000 are compared
with the ones obtained by Hysop code which has already been validated in the
context of porous flows. Through the stability tool, we have discovered, as we
expected, that the bifurcation for the flow past an obstacle surrounded by a porous
layer is delayed.
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Chapter 1

Introduction

This work aims to carry out linear stability of two-dimensional incompressible flow
around a 2D solid obstacle superposed by a porous layer. In particular, the obsta-
cle is a square cylinder for which exists many studies and results in the literature
[12], [4]. This study focuses on the first bifurcation of the flow, so for low Reynolds
numbers. Adding the porous layer around the square cylinder, we will see how some
properties of the flow will change. It is known that the use of porous coatings is a
strategy that allows us to control and regularise the flow to modify the vortex shed-
ding behind the obstacle and reduce the drag. This type of flow control is named
passive flow control. The main advantage of the passive control method respect
to the active method is that they are cheap and straightforward. The use of the
porous coatings is not the only way to pursue the goal; in fact, in the literature has
been proposed devices like the dimples [22], rough surface [20], splitter plates [21]
to realize the passive flow control. When using porous coatings for flow control, one
needs to take into account how efficiency is affected by the thickness, location, and
permeability of the porous medium.
The porous medium plays an important role in the field of engineering, including
Mechanical Engineering, Civil Engineering, Chemical Engineering, Material Engi-
neering, Petroleum Engineering, and more. The applications in the industrial world
of these particular materials are infinite: in fact, they are used to build a device for
the heat transfer or storage, are analyzed to study the acoustic propagation in the
structures, or are analyzed to study wavy propagation in earthquakes.
In the literature, many algorithms exist to model the flow through a porous medium.
If we want to compute the flow past a porous interface, we can do it without re-
solving the porous flow using particular porous-fluid boundary conditions. However,
this is an approximation, and in fact, many authors believe that for having a good
description of the motion field it is necessary to solve the porous flow in the whole
domain. The traditional way for doing this is to solve the coupling between the
Darcy law and the Navier-Stokes equations. A more simple way to solve the whole
porous flow is to use the Brinkman model that consists in adding a linear term to
the right-hand side of the Navier-Stokes equations. This linear term is directly pro-
portional to a coefficient, called the penalization factor, which specially prescribes
the porosity and permeability of the different regions(solid, fluid, porous) of the do-
main. Bruneau and Mortazavi [5] were one of the first to propose the use of porous
media to perform passive flow control by means of the penalization method with
DNS.
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In this internship, the linear stability analysis is used to try to understand how the
addition of the porous layer may change the flow behavior and lead to passive flow
control. It is noteworthy that the presence of the Brinkman term used to take into
account the porous layer does not cause any additional difficulty to the stability
analysis computation since the same is a linear term. Generally, the stability analy-
sis provides the growth rate of σ and the frequency ω of the associated modes for a
given control parameter (e.g., the Reynolds number). This means that for this con-
figuration, one can know how the instability grows in time and at which frequency
the flow oscillates. By repeating this procedure, one can map the parameter space
and obtain precisely at parameter value the growth rate approximates zero, i.e., the
critical Reynolds number. The critical value of the control parameter in which
the flow bifurcates is crucial to understand and predict the change in behavior. Ad-
ditionally, the computation of global modes can provide the spatial distribution of
the perturbation, allowing a better insight into the effects of the porous layer.
The goal of this work is to see, through the results of linear stability analysis, how the
flow dynamics is affected by the addition of the porous layer.In particular, questions
such as: how the critical Reynolds number is affected with respect to a non-porous
case ? How the global modes are modified? Does the position of the porous layer
on the square cylinder can be used to break the flow symmetries?
This work is organized as follows: first, the mathematical model of the fluid dy-
namics equations are presented, i.e., the Navier-Stokes equations and the Brinkman
equations for solving the porous flow. Then the numerical tools and algorithms
for solving the stability problem will be shown. In the last chapter, the DNS and
linear stability results on the solid square cylinder flow and the porous ones will be
presented and discussed.
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Chapter 2

Problem Formulation

2.1 Navier-Stokes equations

In fluid dynamics, the Navier-Stokes equations are a system of partial differential
equations which govern the motion of viscous fluids; these equations are the math-
ematical formulation of the mass conservation principle, Newton’s second law and
the first law of thermodynamics.
The fluid dynamics equations are based on the continuum hypothesis which con-
siders a fluid flow as a continuous system, thus ignoring the molecular nature of
the fluid; since this work aims to perform a stability analysis of incompressible flow
around a solid body, for which the effects of compressibility are negligible (M ≤ 0.3),
we will refer to the incompressible equations:∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = ∇ ·T + ρf

(2.1)

where u is the velocity field, T is the stress tensor and f are the external forces;
the first of equations (2.1) is the incompressibility constraint and the second is the
momentum equation. If we decompose the stress tensor T as sum of an isotropic
part due to pressure and a deviatoric part due to viscous stresses:

T = −pI︸︷︷︸
Hydrostatic stress tensor

+ τ︸︷︷︸
Viscous deviatoric stress tensor

(2.2)

and we make the hypothesis of incompressible Newtonian fluid, for which there
is a linear relationship between viscous stress tensor τ and deformation velocity
tensor E:

τ = 2µE = µ(∇u +∇uT ) (2.3)

one obtains the mathematical formulation of the incompressible Navier-Stokes equa-
tions: ∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∆u + ρf

(2.4)

where µ is the dynamic viscosity. As mentioned above, this equations represents
physical principle at which fluids respond, as the momentum conservation; this can
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be more clear if we analyze the various terms of the momentum equation:

ρ
∂u

∂t
+ ρ(u · ∇)u︸ ︷︷ ︸

Inertial term

= −∇p︸ ︷︷ ︸
Pressure forces

+ µ∆u︸︷︷︸
Viscous forces

+ ρf︸︷︷︸
Volume forces

We can see clearly that the previous equation is a simple balance of forces, as stated
in Newton’s second law.

2.1.1 The dimensionless equations

In this section we will present the dimensionless formulation of equations (2.4); to
do that, let us consider the following dimensionless quantity:

u∗ =
u

U∞
p∗ =

p

ρU2
∞

x∗ =
x

L
t∗ =

tU∞
L

.

where U∞ is the free stream velocity and L is the characteristic body size; if one
assume that there aren’t external forces f exerced on the fluid, substituting this
relationship in equations (2.4) one obtains:∇

∗ · u∗ = 0
U2
∞ρ

L

∂u∗

∂t∗
+
U2
∞ρ

L
(u∗ · ∇)u∗ = −U

2
∞ρ

L
∇∗p∗ +

µU∞
L2

∆∗u∗.

Multiplying the second of the above equations by
L

U2
∞ρ

one finally has:∇
∗ · u∗ = 0

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇∗p∗ +

1

Re
∆∗u∗,

(2.5)

which correspond to the following four scalar equations:

∂u∗

∂x∗
+
∂v∗

∂y∗
+
∂w∗

∂z∗
= 0

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
+ w∗

∂u∗

∂z∗
= −∂p

∗

∂x∗
+

1

Re
∆∗u∗

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
+ w∗

∂v∗

∂z∗
= −∂p

∗

∂y∗
+

1

Re
∆∗v∗

∂w∗

∂t∗
+ u∗

∂w∗

∂x∗
+ v∗

∂w∗

∂y∗
+ w∗

∂w∗

∂z∗
= −∂p

∗

∂z∗
+

1

Re
∆∗w∗,

where Re = LU∞/ν is the Reynolds number, the ratio between the inertial and the
viscous forces and ν = µ/ρ the kinematic viscosity; the presence of the non-linear
term u · ∇u implies that the solution of the PDE system is highly dependent from
the initial condition at fixed Reynlods number Re.
Even today there is no analytical solution to Navier-Stokes equations and the only
thing one can do is to discretize the equations in space and time to obtain a numerical
solution.
As one can see from equations (2.5), the Reynlods number is the only parameter
that prescribes the dynamic of the flow.
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2.2 Instability framework

The stability concept pertains to the tendency of a physical system to move away
or not from its initial condition when this is perturbed. The system is said to be
stable if an infinitesimal perturbation corresponds to a small variation of the present
state which does not grow in time; otherwise, if the infinitesimal perturbation grow
in time, the system is unstable.
The Navier-Stokes equations can be written, formally, as a dynamical system that
evolves in time:

∂q

∂t
= F(q) (2.6)

where q is the state vector and F is the non-linear operator. The first step to
perform a stability analysis is to compute the base state of our problem; the base
state qs is a solution of the equation (2.6) such that:

F(qs) = 0⇐⇒ ∂qs
∂t

= 0

which means that the base state is a steady solution of the equations (2.6).
Now one is able to formalize from a mathematical point of view the stability analysis
notion and so decompose the state vector q as a sum of a steady part qs and a
fluctuating part q′:

q(x, t) = qs(x) + q′(x, t) (2.7)

Introducing the equation (2.7) into the (2.6), we obtain:

∂(qs + q′)

∂t
= F(qs + q′) (2.8)

that is equivalent to:
∂q′

∂t
= F(qs + q′)

because qs is a steady solution of the equations (2.6):

∂(qs + q′)

∂t
=
∂qs
∂t︸︷︷︸
=0

+
∂q′

∂t
=
∂q′

∂t

On the basis of equations (2.7) it is possible now to give some definitions about
stability notion; suppose that a physical problem is governed by a set of partial
differential equations (like NS equations) in a volume V and that the problem is
closed by an initial condition at t = 0 and a set of boundary conditions on ∂V .
One can define the amplitude of the perburbation ||q− qs|| such that:

||q− qs||(t) =

[∫∫∫
V
(q− qs)

2dV

] 1
2

(2.9)

Definition 2.2.1. Lyapunov stability
The base state qs(x, t) is said to be stable if ∀ε > 0, ∃δ(ε) > 0 such that if ||q(x, 0)−
qs(x, 0)|| < δ then ||q(x, t)− qs(x, t)|| < ε, ∀t ≥ 0.
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The base state is stable if, for a given norm, it exists a limit for which the pertur-
bations are small compared to the initial perturbation, ∀t. Now is given a more
restrictive stability definition:

Definition 2.2.2. Asymptotic stability
The base state qs(x, t) is said to be asymptotically stable if it is stable according to
Lyapunov and limt→∞ ||q(x, t)− qs(x, t)|| = 0.

An even more restrictive definition is that of global stability:

Definition 2.2.3. Global stability
The base state qs(x, t) is said to be unconditionally stable if it is stable and ∀||q(x, 0)−
qs(x, 0)|| one has limt→∞ ||q(x, t)− qs(x, t)|| = 0.

A base state that is stable but not unconditionally stable is said to be conditionally
stable, i.e. it exists an amplitude of the initial perturbation beyond which the base
state is not asymptotically stable.
When the operator F is non-linear, there is not a general theory that allows to
compute the non-linear stability; if the perturbation q′ is “small” for a given base
state qs, the equations can be linearized and in this case there is a complete theory
on linear stability analysis.

Definition 2.2.4. Linear Stability
The base state qs(x, t) is said to be stable if all infinitesimal perturbation evolving
onto qs(x, t) decrease asymptotically.

A base state that isn’t linearly stable, is linearly unstable. Therefore, the definitions
of linear stability are derived from more general definitions within the limit δ, ε→ 0.
If the flow is linearly asymptotically unstable, i.e. for δ small enough, then it is also
asymptotically unstable.
Since in this work we will compute a global linear stability analysis for flow around
a porous body, in the next section one will present the required mathematical tools
to perform this study.

2.2.1 Linear analysis

In the theory of linear stability analysis, we assume that the perturbation is in-
finitesimal and so we can linearize the non-linear operator F around the steady
state qs:

F(q) ' F(qs)︸ ︷︷ ︸
=0

+∇F(qs) · (q− qs) +O(||q||2) (2.10)

where ∇F(qs) is a differential operator which depends on the base state qs; if we
neglict the second order terms, equations (2.10) becomes:

F(qs + q′) ' ∇F(qs) · q′.

Taking into account the previous considerations, equation (2.8) can be written as:

∂q′

∂t
= ∇F(qs) · q′ (2.11)
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that is equivalent to the following form:
B
∂q′

∂t
= Jq′

q′(x, t = 0) = q′0
Lq′(x0, t) = 0 ∈ ∂D

(2.12)

which is the equation that governs the evolution in time of an infinitesimal pertur-
bation q′ with:

• B is a mass matrix;

• J is the Jacobian operator;

• q′0 is the initial condition;

• Lq′(x0, t) are the boundary conditions.

2.2.2 Linearized Navier-Stokes equations

With the mathematical tools presented in the previous section, we are now capable
to linearize the Navier-Stokes equations around the base flow; if now we apply the
decomposition (2.7) to the Navier-Stokes equations, one can write that:

u(x, t) = Ub(x) + u′(x, t)

p(x, t) = pb(x) + p′(x, t)

where Ub and pb represents the steady solution of the Navier-Stokes equations (so
the base flow) whereas u′ and p′ are the infinitesimal perturbations of the velocity
field and pressure field.
Introducing the previous relationships in equations (2.5) one obtains:

∇ · (Ub + u′) = 0

∂(Ub + u′)

∂t
+ [(Ub + u′) · ∇](Ub + u′) = −∇(pb + p′) +

1

Re
∆(Ub + u′)

If one now develops the calculus and recall that the base flow satisfy the following
steady Navier-Stokes equations:∇ ·Ub = 0

(Ub · ∇)Ub = −∇pb +
1

Re
∆Ub

(2.13)

one obtains:
∇ · u′ = 0
∂u′

∂t
+ (Ub · ∇)u′ + (u′ · ∇)Ub︸ ︷︷ ︸

Linear terms

= −∇p′ + 1

Re
∆u′ + (u′ · ∇)u′︸ ︷︷ ︸

Non-linear term

As one can see, these equations are still non-linear for the presence of the term
(u′ · ∇)u′.
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If one suppose that the perturbation is infinitesimal (i.e. ||u′|| << 1) one can neglict
the non-linear term obtaing the Linearized Navier-Stokes equations:∇ · u

′ = 0
∂u′

∂t
+ (Ub · ∇)u′ + (u′ · ∇)Ub = −∇p′ + 1

Re
∆u′

(2.14)

which corresponds to the following scalar equations:

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0

∂u′

∂t
+ Ub

∂u′

∂x
+ Vb

∂u′

∂y
+Wb

∂u′

∂z
+ u′

∂Ub
∂x

+ v′
∂Ub
∂y

+ w′
∂Ub
∂z

= −∂p
′

∂x
+

1

Re
∆u′

∂v′

∂t
+ Ub

∂v′

∂x
+ Vb

∂v′

∂y
+Wb

∂v′

∂z
+ u′

∂Vb
∂x

+ v′
∂Vb
∂y

+ w′
∂Vb
∂z

= −∂p
′

∂y
+

1

Re
∆v′

∂w′

∂t
+ Ub

∂w′

∂x
+ Vb

∂w′

∂y
+Wb

∂w′

∂z
+ u′

∂Wb

∂x
+ v′

∂Wb

∂y
+ w′

∂Wb

∂z
= −∂p

′

∂z
+

1

Re
∆w′

The previous system can be written as system (2.12) introducing the mass matrix
B and the Jacobian operator J:

B =

(
I 0
0 0

)
J =

(
−∇Ub −Ub · ∇+Re−1∆ −∇

∇· 0

)
obtaining so the compact form of the equations (2.14).

2.2.3 Global linear stability analysis

If the base flow Ub is steady, the linearized Navier-Stokes equations are autonomous
and so the solution can be found as a normal mode:

q′(x, t) = q̂(x)eψt (2.15)

Introducing this formulation for q′ in the equations (2.14) we obtain:∇ · û = 0

ψû + (Ub · ∇)û + (û · ∇)Ub = −∇p̂+
1

Re
∇2û

and recalling the mass matrix B and the Jacobian operator J one can write the
previous equation in the following eingenvalues problem:

ψBq̂ = Jq̂⇐⇒ {J− ψB}q̂ = 0 (2.16)

where ψ = σ + iω is the eigenvalue and q̂ is the eigenvector associated to the
eigenproblem (2.16); it is important to underline that the eigenvalues represent the
global modes of the base flow Ub and that the real part σ of the leading eigenvalue
is the growth rate of the instability whereas the imaginary part ω characterises the
stationary or oscillatory nature of the associated eigenvector; indeed, if we introduce
the eigenvalues in the equation (2.15) one obtain:

q′(x, t) = q̂(x)eσteiωt (2.17)

As one can see, the sign of the growth rate σ determines the stability of the base
flow Ub:
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• if σ < 0 the perturbation decays exponentially in time and the base flow Ub

is globally stable;

• is σ > 0 the perturbation grows exponentially in time and the base flow Ub is
globally unstable.

2.3 The penalization method

In this work, we want to model fluid flow in a domain constituted of three different
media (a solid, a saturated porous medium and an incompressible fluid) with the
same equation using the penalization method. The penalization method consists in
add a forcing term on the right hand side of the momentum equations and thanks
to this term, it is possible to model the entire domain as a porous medium with
different permeabilities.

2.3.1 The Brinkman Navier-Stokes equations

We recall that the three-dimensional formulation of the Navier-Stokes equations,
without external forces, is given by:∇ · u = 0

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∆u

where ρ is the fluid density, µ is the dynamic viscosity of the fluid, u is the velocity
vector field and p is the pressure scalar field.
The flow velocity u in a porous medium is given by the Darcy law:

u = − k

µΦ
∇p (2.18)

where Φ denotes the porosity of the medium and k is the intrinsic permeability.
The porosity Φ of a porous medium corresponds to the fraction of void space in a
material and it is defined as follows:

Φ =
VV
VT

(2.19)

where VV indicates the volume of the void-space and VT is the total volume of the
material, including the solid and the void parts. The porosity is therefore a value
between 0 and 1.
The permeability k measures the ability of a porous material to allow fluids to
pass through it. High permeabilities will therefore enable a fluid to evolve fastly
within a porous medium. This quantity directly derives from the Darcy equation
and its unit of measure is the darcy (Da = 0.97× 10−12m2).
If we assume that the Boussinesq hypothesis is satisfied for the fluid saturating the
porous medium, we get the Brinkman equation:

∇p = −µΦ

k
u + µ̃Φ∆u (2.20)
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where µ̃ is the Brinkman’s effective viscosity. Is a common practice to set µ equal to
µ̃ when we have high porosity ( Φ ∼ 1); therefore, assuming that µ̃ ∼ µ/Φ, equation
(2.20) becomes:

∇p = −µΦ

k
u + µ∆u

If we add the intertial terms to the previous equation we obtain the Brinkman
Navier-Stokes equations [5]:∇ · u = 0

∂u

∂t
+ (u · ∇)u = −∇p

ρ
− µΦ

kρ
χbu +

µ

ρ
∆u

(2.21)

where χb is the characteristic function equal to 0 in the fluid and 1 in the body. It
is important to recall that the Brinkman equation is only valid when the porosity is
close to one (Φ ' 1).

2.3.2 The dimensionless equation

To obtain the dimensionless formulation of equations (2.21), let us consider the
following dimensionless quantities:

u∗ =
u

U∞
p∗ =

p

ρU2
∞

x∗ =
x

L
t∗ =

tU∞
L

.

Substituting this relationship in equations (2.21) one obtains:∇
∗ · u∗ = 0

U2
∞
L

∂u∗

∂t∗
+
U2
∞
L

(u∗ · ∇)u∗ = −U
2
∞
L
∇∗p∗ +

µU∞
L2ρ

∆∗u∗ − µΦU∞
kρ

χbu
∗,

and multiplying the second of the above equations by
L

U2
∞

one finally has:

∇
∗ · u∗ = 0

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇∗p∗ +

1

Re
∆∗u∗ − λχbu∗,

(2.22)

where λ = 1/K = µΦL/kρU∞ = ΦL2/kRe is the dimensionless penalization param-
eter that is directly linked to the porosity Φ and to the intrinsic permeability of the
medium k .
When there is a fluid-solid-porous interaction the behavior and properties of the
flow change; in particular from a physical point of view, one can understand what
happens at the flow velocity profile looking at the figure 2.1. As explained in [6]
by Bruneau and Mortazavi, one can consider five regions from the solid wall to the
freestream fluid flow.
Region 1 corresponds to the thickness of the boundary layer close to the solid wall
while in the region 2 the flow velocity uD is uniform (uD is the Darcy velocity). Re-
gions 3 and 4 are two transient layers where the velocity growth, respectively, from
uD to ui and from ui to u∞. As mentioned above, the penalization method allows
us to consider the whole domain as a porous medium with different permeabilities.
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Figure 2.1: Velocity profile in a porous media. uD denotes the Darcy velocity inside
the porous media, ui is the slip velocity and u∞ is the freestream velocity. Figure
from Mimeau thesis [15].

In this work we set L = ρ = U∞ = 1 and therefore, at given Reynolds number, the
penalization parameter λ only depends, in the inverse proportion, to the intrinsic
permebeality of the medium k. Let us note that this model is valid only when the
porosity of the porous medium Φ is close to one. Varying the value of λ thus directly
defines the different media. Indeed, in the fluid, the intrinsic permeability coefficient
k goes to infinity (k →∞), thus the fluid can be considered as a porous media with
a very high permeability. So if we set λ = 0 in this region the penalization term
vanishes in equation (2.22) and we naturally recover the dimensionless Navier-Stokes
equations: ∇

∗ · u∗ = 0
∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇∗p∗ +

1

Re
∆∗u∗.

If the intrinsic permeability k goes to zero (k → 0), we can consider this region as a
solid medium and set λ to very high value, for example λ ' 108. It was proved by
[2] that solving equations (2.22) with such value of λ is equivalent to solve Darcy’s
law in a solid. Finally, for an intermediate value of λ, between 0 and 108, one can
consider this region as a porous medium in which the flow has a Darcy velocity uD.
The next table will summarize what has been said about the λ parameter and the
consequent flow behavior.

Domain regions λ-value and corresponding permeability State of the velocity flow
Fluid λ = 0 (infinite permeability) u is not penalized
Solid λ = 108 (zero permeability) u→ 0

Porous 0 < λ < 108 (intermediate permeability) u = uD
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Chapter 3

Numerical tools

3.1 Nek5000

The work of this internship has been based on the use of the spectral elements code
Nek5000 [8] for developing every step of the linear stability analysis; the code is
written in f77 and C and allows to simulate laminar, transitional, and turbulent
incompressible or low Mach-number flows with heat transfer. The code is based on
the Nekton 2.0 spectral element code written by Paul Fischer, Lee Ho and Einar
Rønquist in 1986-1991, with technical input from A.Patera and Y.Maday; the de-
velopment of the code Nek5000 has been carried out in the last thirty years by
P.Fischer et al. and today it is used by hundreds of scientists and engineers in
academia, laboratories and industry. 1

In this chapter, we will present first a brief presentation of time integration and
spatial discretization that is used in Nek5000 and after the Selective Frequency
Damping method for the base flow computation and finally the Arnoldi algorithm
for solving the eigenvalues problem; for more details about the numerical method
see chapter 6 of Nek5000 documentation [1].

3.1.1 Time integration

In this section we will present the temporal discretization used by Nek5000 [8] for
the incompressible Navier-Stokes equations:∇ · u = 0

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u

For stability reasons we will treat the non-linear terms via an explicit method and
the linear term via an implicit method; we can rewrite the momentum equation by
denoting the non-linear term as N(u) and the linear one as L(u):

∂u

∂t
= −∇p+ N(u) + L(u)

where N(u) = −u · ∇u and L(u) =
1

Re
∆u.

1from https://www.mcs.anl.gov/~fischer/nek5000/primer.pdf
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One can discretize the equation using a k -th order backward differentation formula

that approximates the derivative
∂u

∂t
:

k∑
j=0

bj
∆t

un+1−j = −∇pn+1 + N(un+1) + L(un+1) (3.1)

and extrapolating the non-linear term as:

BDFk
k b0 b1 b2 b3

1 1 -1
2 3

2
−4

2
1
2

3 11
6
−18

6
9
6
−2

6

Table 3.1: Coefficients for the k -order backward finite difference scheme with k ≤ 3.

N(un+1) =
k∑
j=1

ajN(un+1−j)

we have:

EXTk
k a1 a2 a3

1 1
2 2 -1
3 3 -3 1

Table 3.2: Coefficients for the k -order extrapolation scheme with k ≤ 3.

k∑
j=0

bj
∆t

un+1−j = −∇pn+1 +
k∑
j=1

ajN(un+1−j) + L(un+1) (3.2)

If now we separate the implicit and explicit term:

b0

∆t
un+1 +∇pn+1 − L(un+1) = −

k∑
j=1

bj
∆t

un+1−j +
k∑
j=1

ajN(un+1−j)︸ ︷︷ ︸
F(un)

(3.3)

that is equivalent to:

b0

∆t
un+1 +∇pn+1 −∆un+1 = F(un) (3.4)

where the term F(un) is an explicit term that can be calculated using information
known at the previous time tn.
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3.1.2 Spatial discretization

Since nowadays it is not possible to compute an analytical solution of Navier-Stokes
equations, it is necessary to discretize the equations to obtain a numerical solution.
The code Nek5000 [8] used in this internship work, is based on the Legendre spectral
elements method, that was introduced by in 1984 by A. Patera [18]. This method
shares many features with the finite element method and therefore it is included in
the family of approximation schemes based on Garlekin’s method. The idea which is
based Nek5000 is to minimize the error of the numerical computation in the energy
norm over a chosen space of polynomials of order N . For further details, the reader
is referred to the books by Deville et al [7].

3.2 Base flow computation

In the theory of linear stability, the first step is the computation of the fixed points
of Navier-Stokes equations around which the equations will then be linearized. After
their computation, linear stability will tell us if the fixed points are stable or not.
For this internship work, we chose the Selective Frequency Damping (SFD) method,
a simple numerical approach used to calculate the steady state of an unstable con-
figuration that was first proposed by Åkervik et al.(2006) [23].

3.2.1 Selective frequency damping

In this paragraph will be present as the Selective Frequency Damping method works;
we recall that the Navier-Stokes equations can be written as:

q̇ = F(q) (3.5)

The main idea of the SFD method is to introduce a linear forcing term in the right
hand side of equation (3.5); doing that the new problem formulation is:

q̇ = F(q)− χ(q− qs) (3.6)

One can observe that when qs is a steady solution of equation (3.6),then qs is also
steady solution of equation (3.5); the problem is that this steady solution qs is not
known a priori. The SFD method replaces this unknown steady state qs by a low-
pass filtered version of q, denoted q̄. To close the system it is necessary to add an
equation that governs the evolution in time of low-pass filtered solution q̄; doing
that the new formulation of equation (3.6) is:{

q̇ = F(q)− χ(q− q̄)

˙̄q = ωc(q− q̄)
(3.7)

which, in the case of the Navier-Stokes equations becomes:
u̇ + (u · ∇)u = −∇p+

1

Re
∆u− χ(u− ū)

˙̄u = ωc(u− ū)

∇ · u = 0

(3.8)
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where χ is the gain of the filter and ωc its cut-off circular frequency. The choice of
these two parameters is very important: χ has to be positive and greater than the
growth rate of the instability one aims to kill, whereas ωc has to be lower than the
eigenfrequency ω of the instability (usually ωc = ω/2); for more details about this
see [11].

3.3 Eigenvalues problem computation

As seen in the previous sections, the linear stability problem requires the eigen-
spectra computation of the Jacobian operator J; nowadays different algorithm exist
for the computation of the eigenpairs (q̂, ψ) but unfortunately, these requires the
storage of the mass matrix B and the Jacobian operator J; this can rapidly become
a limitation because the generalized eigenproblem (2.16) comes directly from the
discretization of the fully linearized Navier-Stokes equations (LNSE) that involves
a very large number of degrees of freedom and so the storage of the mass matrix B
and the Jacobian operator J would be highly expensive.
To avoid this complication, different algorithms have been proposed in the past; the
one that has been used in this internship work is based on a time-stepper approach
of the eigenvalues problem as proposed initially by Marcus Tuckerman [14] in 1987.

3.3.1 Time-stepper approach

The idea of this method is to project our linear dynamical system into a divergence-
free vector space such that equations (2.14) can be rewritten as:

∂u′

∂t
= Au′ (3.9)

where now A is the projected Jacobian operator; one can observe that equation
(3.9) accepts a solution as:

u′(∆t) = u′0 e
A∆t︸︷︷︸

M(∆t)

(3.10)

where the term eA∆t is called the exponential propagator M(∆t) of equation (3.9).
At first sight, it would seem the operation is counterproductive since the size of
the matrix has remained unchanged, as the calculation of an exponential matrix
eA∆t can computationally demanding. It is noteworthy that this operation can be
approximated with the action of the exponential propagator M(∆t) on a vector u′0.
This is achieved by time-marching the LNSE from an appropriate initial condition
u′0; a secondary aspect relies on the fact that eigenpairs (V,Λ) of the projected
Jacobian matrix A and the eigenpairs (Ve,Σ) of the exponential propagator M(∆t)
are simply related by relationships:

Λ =
log(Σ)

∆t
, V = Ve (3.11)

These considerations therefore lead us to calculate the eigenpairs of the exponen-
tial propagator M(∆t) that those of the Jacobian operator A; through a simple
logarithmic conversion it is possible to calculate the eigenvalues of A.
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Figure 3.1: The Arnoldi iteration: given a square matrix M ∈ Rn×n , construct
U ∈ Rn×k with orthonormal columns such that H ∈ Rk×k is an upper Hessenberg
matrix and only the last column of the residual R ∈ Rn×k is non zero. Figure adapt
from [3].

3.3.2 Arnoldi algorithm

The Arnoldi algorithm combines the properties of the power iteration method and
of the Gram-Schmidt iterations to find an approximation to the leading eigenvalues
and eigenvectors of matrix M to constructing an orthonormal basis of the Krylov
subspace with dimension n:

Kn =
{
u0,Mu0, ...,M

n−1u0

}
(3.12)

where M is the exponential propagator and u0 is an initial arbitrary vector such
that ||u0|| = 1; the sequence (3.12) forms the so-called Krylov subspace.
The power iteration method is a simple algorithm that produces a number ψ, which
is the greatest eigenvalue of a matrix A and a vector v, that is the corresponding
eigenvector, such that Av = ψv; however, it only uses the last result of the sequence
(3.12), losing potentially important information of the previous iterations; alterna-
tively the Arnoldi algorithm uses all the information of the sequence (3.12) thanks
to a Gram-Schimdt iteration that orthogonalize the vectors.
The basic Arnoldi iteration is characterized by the following relationship:

MUk = UkHk + rke
T
k (3.13)

where Uk is a set of orthonormal vector, Hk is an upper Hessenberg matrix and rk
is a residual vector that indicates how far is Uk from an invariant subspace of M;
the determination of the upper Hessenberg matrix H is performed according to the
Arnoldi algorithm, where the computation of the w = Muj is actually performed
numerically by time-marching the LNSE; figure 3.1 shows the matrices involved
in the algorithm. The eigenpairs of the upper Hessenberg matrix (ΣH ,X) can be
computed easly and are a good approximation of those of M; indeed, this upper
Hessenberg matrix is a low-dimensional approximation of the exponential propagator
M and its eigenpairs are linked to the eigenpairs of the Jacobian matrix A by the
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following relationship: Λ = σ + iω ' log(ΣH)

∆t
V ' UX

where ∆t is the sampling period; we must underline that this technique is the result
of a sophisticated treatment of the signal and therefore in order to have acceptable
results we must respect the Nyquist criterion. Finally, the Arnoldi algorithm used
in this internship work is showed in the figure 3.2.
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Figure 3.2: Block diagram of the time-stepping Arnoldi algorithm implemented
around the Nek5000 temporal loop. Figure from Loiseau thesis [13].
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Chapter 4

Linear stability analysis for flow
around a square cylinder

In this chapter, we present numerical results concerning the stability analysis for
flow past a 2D square cylinder. The first part of this chapter will be dedicated to
the results of flow past a solid square cylinder and in the second part we will present
the DNS and linear stability analysis for flow past a square cylinder covered by a
porous layer. These results will be compared in order to enhance the influence of
the porous coating on the flow dynamics. The flow regime at low Reynolds number
(Re ≤ 60) is investigated; in particular close to the first bifurcation occurring at
Re ' 45.
To validate the current implementation, DNS computations have been performed
for each case (solid square cylinder and porous square cylinder) to verify the flow
behavior and characteristic quantities (such as the Strouhal number). Different steps
of the stability analysis are then performed with the numerical tools presented in
the previous section, starting with the computation of base flows. First of all, to
introduce this chapter, we will recall some concepts about the flow around bluff
bodies, such as the square or circular cylinder.

4.1 Literature survey on flow past a 2D square

cylinder

It is helpful to recall some physical concepts about both the flow around the circular
and the square cylinders, as significant similarities are shared. We will see how the
flow behavior changes when the Reynolds number is increased. We know that the
Reynolds number is the only parameter that prescribes the dynamics of the flow.
Therefore, it is possible to classify the different dynamics of the flow as a function of
the Reynolds number’s evolution. The key difference between flow around a circular
cylinder and a square cylinder is the threshold at which the flow behavior changes;
this is due to the different shape of the solid obstacle and linked to the presence of
discontinuities in the square cylinder corners. Furthermore, it is possible to verify in
the literature that the critical Reynolds number for the square flow cylinder is more
sensitive to the cross-domain size concerning the classical circular cylinder flow.
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Four different behaviors are commonly identified (values from [10]):

1. Laminar steady regime: in this stable regime, the flow is steady, and a
dually symmetrical recirculation bubble with respect to the centerline of the
wake is formed; for the circular cylinder, this is obtained for Re < 47 while
for the square for Re < 46.

2. Laminar vortex shedding regime: at parameter values above the critical
Reynolds number, a Hopf bifurcation occurs, and a periodic shedding rises due
to the von-Kármán mode; for the circular cylinder, this behavior takes place
for 47 ≤ Re < 190 and in the range 46 ≤ Re < 166 for the square cylinder.

3. Three-dimensional wake transition regime: by further increasing the
Reynolds number, a second bifurcation occurs and is characterized by the
breaking of the spanwise symmetry; the 2D flow becomes 3D. The three-
dimensional configuration is observed in the range 190 ≤ Re < 270 for the
circular body and at 166 ≤ Re < 210 for the square.

4. Wake transition to turbulence: for values Re > 270 for the circular cylin-
der and at Re > 210 for the square, the flow becomes turbulent, and pre-
dictability becomes more uncertain as the control parameter is increased.

4.2 Numerical setup

A schematic view of the computational domain is shown in figure 4.1. It is known
that the height of the domain H must be greater enough with respect to the square
side length d so as not to introduce a fictitious acceleration in the flow. This effect
can be measured by the blockage ratio defined as β = d/H; in the present work,
β ' 4.8% is such that the flow behavior is unaltered.
The mesh was built with the open-source mesh generator Gmsh [9]; the employed
mesh is composed of N ' 30k elements, giving a good compromise between compu-
tational cost and accuracy. The number of the nodes on the surface of the square
cylinder is 36. The mesh details are shown in figure 4.2, and it can be seen the mesh
size is not uniform throughout the domain, being denser near the square cylinder
and in the wake. In these zones, stronger velocity gradients are expected and a
fine mesh is required in order to capture even the smallest flow scales. For all the
simulations, the time step ∆t is bounded by the CFL (Courant–Friedrichs–Lewy)
defined as:

CFL =
|u|∆t
h

(4.1)

with |u| the magnitude of the velocity through an element and h the mesh size. The
threshold for the stability condition of the numerical scheme is set to CFL ≤ 0.5
and so the time step ∆t is calculated to satisfy the condition.
Concerning the boundary conditions, at the inlet, a uniform velocity field U∞ =
(ux, 0) is imposed whereas at the outlet a Neumann boundary condition is employed.
On the top and bottom of the domain, a symmetric slip boundary condition is
applied and on the cylinder surface, the no-slip boundary condition (u = 0) is
imposed. For this project, we choose a square side length d = 1 and the x-component
of the free-stream velocity ux = 1.
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Figure 4.1: Schematic representation of the computational domain (not in scale).

Figure 4.2: Mesh for the flow past a 2D square cylinder.

4.3 Numerical results for flow past a solid square

cylinder

4.3.1 DNS computations

To check the flow behavior, we performed direct numerical simulations (DNS) at
different Reynolds numbers and in particular, we focus on the Strouhal number.
The Strouhal number is a dimensionless number that is defined as:

St =
fd

U
(4.2)

where f is the vortex shedding frequency, d is the square length side and U is
the characteristic flow velocity (in this work, U has been chosen like the freestream
velocity U∞). In CFD this number is very important because it describes the oscil-
lating flow mechanisms. Since in this work d = U = 1, the Strouhal and the vortex
shedding frequency are the same thing. Figure 4.3 shows the velocity field for differ-
ent Reynolds numbers. The simulation has been performed for dimensionless time
t = 1000. As we can see, the case at Re = 43 seems stable while the second one at
Re = 50 seems unstable; we can check this behavior by looking at the evolution of
the vertical velocity v in time. To do so, we use a probe that is placed in the middle
of the wake, at the point P = (20, 0). Remember that the origin of the reference
system is placed in the center of the square cylinder.

26



(a) Re = 43

(b) Re = 50

Figure 4.3: Instantaneous velocity magnitude for different Reynolds numbers.

From figure 4.4 we can make several observations. As stated above, the flow at
Re = 43 is stable since we can see that the perturbation at the beginning grows in
time but quickly decays exponentially in time. This is due to the viscous effects, that
force the flow to the stable fixed point. We can also observe that the amplitude
of the perburation is ' 10−6 that basically means zero.
On the other hand, when the Reynolds number is set to Re = 50, the flow is un-
stable: the perturbation starts to grow around t ' 300 and reaches a limit cycle at
t ' 700. This behavior is caused by the unstable mode, that in this case is the Von
Karman vortex street mode, which deforms the base flow. The vortex shed-
ding is observed in figure 4.5 which shows the time evolution of the streamlines for
Re = 50. Now, we check the frequency at which the flow oscillates through a PSD
(Power Spectral Density). The spectrum of the whole signal in shown in figure 4.6.
The frequency we are interested in coincides with the peak of the spectrum, which
is approximately f ' 0.1162. This is in good agreement with the literature [10].
An interesting thing is that the spectrum is composed only by odd harmonics;
in fact, we have the first and the third harmonics, respectively, f1 ' 0, 1162 and
f3 ' 0, 3486. This symmetry of the flow is due to the shape of the cylinder: when
we have a circular cylinder, the spectrum is composed by odd and even harmonics
while for the square cylinder the even harmonics are suppressed.
The vortex shedding frequency (or the Strouhal number) calculated is also verified
by the Roshko formula [19], a well known relationship used in fluid dynamics that
links the Reynolds number to the Strouhal one. The formula proposed by Roshko
is the following:

St = A+
B

Re
(4.3)
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(a) Re = 43

(b) Re = 50

Figure 4.4: Vertical velocity over time for different Reynolds numbers.
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(a) (b)

(c) (d)

Figure 4.5: Streamlines: (a) t=992, (b) t=994, (c) t=996, (d)t =999 for Re = 50.

where A = 0, 2175 and B = −5, 106 for the circular cylinder. In figure 4.7 are shown
the present DNS results for square cylinder against Roshko for circular cylinder.

4.3.2 Linear stability analysis

Now the code is validated, linear stability analysis is performed. This analysis
consists in two steps:

1. calculate the fixed points of the system with the selective frequency damping
method;

2. solve the eigenvalues problem with the Arnoldi algorithm to characterize
the stability of the fixed points.

The SFD method works by damping the most unstable frequencies linked to hydrod-
namic instabilities. Then is important to understand that we need to use the SFD
method only when the Reynolds number is supercritical Reynolds numbers, i.e.
Re > Rec, because in this case the flow oscillates with the vortex shedding frequency
and we want to kill it to compute the fixed points. When the Reynolds number is
subcritical, i.e., Re < Rec we don’t employ the SFD method because the flow
doesn’t oscillate; in this case, DNS computation and SFD computation give us the
same results. Figure 4.8 depicts an example of base flow computation at Re = 50.
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Figure 4.6: Signal spectrum for the case Re = 50 .

Figure 4.7: Strouhal number St versus Reynolds number Re.

Throughout this work, it has been considered that the solution reaches the steady-
state when the residual R = ||un+1 − un||/∆t converges down to R ' 10−9. To see
the influence of the cut-off frequency ωc and of the gain χ on the residual R many
simulations have been performed. Figure 4.9 shows these results. Furthermore, fig-
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(a) DNS computation for Reynolds number Re = 50.

(b) Base flow computation for Reynolds number Re = 50.

Figure 4.8: Velocity field versus unstable equilibrium.

Figure 4.9: Time evolution associated to the residual R needed to reach a steady
state converged down to R ≤ 10−9. χ = 0.2

ure 4.10 gives the recirculation lengths obtained through the isocontour u = 0 of the
x-velocity from the base flow at different Reynolds numbers. Even if this physical
quantity is generally deduced from the mean flow, it is important to notice that
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the linear trend is respected. Running a DNS simulation from the base flow is

Figure 4.10: Recirculation length against Reynolds number.

possible to track different interesting graphics that are useful for understanding the
physics of our dynamical system. First, let us consider figure 4.11 which represents
a semi-log plot of the vertical velocity over time. As we can see, at the beginning
the perturbation grows linearly over time and then the perturbation reaches a non-
linear saturation, i.e the limit cycle. The slope of the linear tract is precisely the
growth rate of the instability σ; in fact, we remember that the perturbation for our
study is in the form of normal modes:

v ′ = v0e
ψt = v0e

σteiωt (4.4)

where σ is the growth rate of the instability whereas ω is the eigenfrequency. So if
we take the log of the previous equation and consider only the real part, we obtain:

<
[

log
(v ′

v0

)]
= σt. (4.5)

Of course, equation 4.5 is only valid in the linear tract. What happens is that,
initially, the perturbation evolves linearly over time, in agreement with our linear
study but at some point, the non-linear effects become preponderant and so, in
this regime the flow is non-linearly saturated. Through Figure 4.14 is possible to
understand the importance of the non-linear effects; in fact, it shows the difference
that exists between the frequency obtained from the DNS and the one as a result
of the stability analysis. What we expect is that when the Reynolds number is
close to the critical one, the two frequencies are approximately the same. On the
other hand, is clear that when the Reynolds number increases, the non-linear effects
become more important and so the difference between the two frequencies grows.
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Figure 4.11: Semi-log plot of the vertical velocity over time for different Reynolds
numbers.

Finally, figure 4.12 and 4.13 give the phase plots, i.e. the vertical velocity against
his first (4.12) or second (4.13) time derivative. In particular, figure 4.12 is exactly
the Hopf bifurcation in his canonical form. We can see that for both cases when
increasing the Reynolds number the non-linear distortion becomes more important.
The last step of this part is solving the eigenvalues problem to characterize the
stability of the baseflow. Many simulations have been performed to carry out the
eigenspectra and the eigenfunctions. For all the simulations, it has been set a Krylov
subspace dimension k = 250 and a residual R = 10−6. To begin let’s consider the
linear stability of the flow around the square with Re = 50; the corresponding
eigenspectrum is shown in figure 4.15 and as we expected, this configuration is
unstable since it’s leading eigenvalue has real part greater than zero (σ > 0). Figure
4.18 shows the real part of the eigenfunctions associated with the leading eingevalue.
To find the critical Reynolds number, we can do a linear interpolation; to do

this, we need two cases where the growth rate σ is close to zero, i.e. σ ' 0. Linear
stability computation show us that these two cases are for Re = 43 and Re = 45,
as we can see in the figure 4.16. Through the linear interpolation we find a critical
Reynolds number Rec ' 44 , as can be seen on figure 4.17 which traces the neutral
curve that shows that show the growth rate σ against the Reynolds number Re.
This curve is compared with the results proposed by Kelkar et al. [12] where they
found a critical Reynolds number Rec ' 53. This difference should be due to the
blockage ratio and mesh size. Then to view how the critical value is affected by the
blockage ratio it would be necessary to perform another study with different mesh.
What we should expect by varying the blockage ratio is only a shift of the threshold
for the critical Reynolds number. Of course, we expect the same flow behavior and
physics.
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(a)

(b)

Figure 4.12: Phase plot (v, v̇) for flow past a square cylinder: (a) Re = 50, (b)Re =
60.
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(a)

(b)

Figure 4.13: Phase plot (v, v̈) for flow past a square cylinder: (a) Re = 50, (b)Re =
60.
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Figure 4.14: Non-dimensional frequency against the Reynolds number.

Figure 4.15: Eigenspectrum for the flow past a solid square cylinder at Re = 50.
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Figure 4.16: Eigenspectra for the flow past a solid square cylinder at Re = 43 and
Re = 45.

Figure 4.17: Growth rate of the instability σ against Reynolds number Re for the
flow past a solid square cylinder.
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(a) Velocity magnitude u.

(b) Streamwise component of the velocity (u).

(c) Vertical component of the velocity (v).

(d) Pressure p.

Figure 4.18: Real part of the globally unstable modes associated with leading eigen-
value for the flow past a solid square cylinder at Re = 50.
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4.4 Numerical results for flow past a porous square

cylinder

This part is the core of the present study in which we will investigate how the flow
past an obstacle is modified due to the presence of a porous layer around it. Now,
we consider a solid square cylinder surrounded by an homogeneous porous layer of
uniform permeability, porosity and thickness. In order to have the total diameter
of the square always equal to one, dcube = 1, we need to reduce the diameter of
the square for taking into account the porous layer. We set the diameter of the
solid obstacle to dsolid = 0.8 and the thickness of the porous layer to s = 0.1 in
order to have dcube = dsolid + 2s = 1. We recall that the square cylinder is located
at (x, y) = (0, 0) in the computational domain D = [−10, 60] × [−10, 10] and the
time step at each iteration is bounded with the CFL condition in order to have the
CFL ' 0.5. Each DNS simulation is performed for dimensionless time t = 1000.
Since the purpose of the porous layer is to control the flow, we expect a delay in the
flow regime transition, that is to say an increase of the critical Reynolds number.

4.4.1 DNS computations and validation

In order to validate the implementation of the Brinkman penalization model within
the Nek5000 code, my simulation results of flow around a solid-porous obstacle have
been compared to the numerical results issued from another code, called Hysop
(Hybrid Simulations using Particles), which also uses the Brinkman penalization
model and has already been validated in the context of porous flows, [16], [17]. In
this code, the Brinkman Navier-Stokes equations are resolved in their dimension-
less velocity(u)-vorticity(ω) formulation, obtained by taking the curl of the Navier-
Stokes equations:

∂ω

∂t
+
(
u · ∇

)
ω =

(
ω · ∇

)
u +

1

Re
∆ω −∇×

(
λχbu

)
∆u = −∇× ω

(4.6)

where the vorticity is defined as ω = ∇ × u. In Hysop code, equations 4.6 are
discretized using a numerical method called the ”remeshed Vortex method”. It is
a semi-Lagrangian method (partially Lagrangian and partially Eulerian) which is
based on the following splitting algorithm

1. the advection term is solved in a Lagrangian way, using particles. Once the
particles have been advected at the fluid velocity, they are resmeshed on an
underlying Cartesian grid.

2. once the particles are on the grid, one uses Eulerian grid based meth-
ods (FFT based or Finite-Differences methods) to solve all the other terms
: the diffusion term, the stretching term (only in 3D), and the Brinkmann
penalization term.

To know more details about the Vortex penalization method, you can refer to [16]
and [17].
In this work, the whole control study using porous media will be performed at
Re = 60. For the first validation step, we consider the two limit cases of flow past
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a solid square cylinder with d = 1 and then with d = 0.8 (square cylinder without
porous layer). For the configuration d = 0.8, what we expect is an increase of the
Strouhal number respect to the flow with d = 1. This is a known result in the
literature. Figure 4.19 shows the present results with Nek5000 for the two limit
cases. Starting from the solid case with d = 0.8, what we should obtain is that

Figure 4.19: Signal spectrum for the two limit cases at Re = 60 (present results).

Figure 4.20: Signal spectrum for different control cases at Re = 60 (present results).

increasing the value of the λ parameter (i.e. decreasing the permeability) in the
porous layer, would asymptotically tend to the solid case with d = 1. Figure 4.20
shows that this is actually what we obtain in Nek5000, since the porous cases with
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Figure 4.21: Signal spectrum for different control cases at Re = 60 (Hysop results).

λ = 1, 5, 10 and 20 are between the two limit solid cases.
This behavior is confirmed by the results obtained with Hysop code as shown in

Case Present (Nek5000) Reference(Hysop)
d = 1.0, solid 0.1259 0.1351
d = 1.0, λ = 20 0.1305 0.1400
d = 1.0, λ = 10 0.1325 0.1428
d = 1.0, λ = 1 0.1395 0.1498
d = 0.8, solid 0.1410 0.1500

Table 4.1: Comparison of Strouhal number values of the present work and reference.

figure 4.21 and table 4.1, which respectively report the power sectrum and numerical
values of Strouhal number for each case. It has to be mentionned that the results
obtained with Hysop derive from simulations performed in a smaller domain (D =
[−4, 21.6]× [−5.12, 5.12]) with a coarser resolution (25 grid points along the whole
obstacle), which explains the quantitative dicrepancy between the results. However,
what is important is that the tendency concerning the evolution of Strouhal number
depending on λ is the same for both, i.e:

St
(
d = 1) > St

(
λ = 20) > St

(
λ = 10) > St

(
λ = 1) > St

(
d = 0.8) (4.7)

As another comparative quantity for the validation has been considered the y-profile
of the mean streamwise velocity ux at x = 0. Figure 4.22 shows the profile obtained
with Nek5000 code whereas figure 4.23 the one obtained with Hysop code. What
can be seen from figures 4.24 and 4.25 is that the trend of all curves is almost
the same for both codes and so they are in good agreement. In order to be
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Figure 4.22: y-profile of the mean streamwise velocity ux at x = 0. (present results).

Figure 4.23: y-profile of the mean streamwise velocity ux at x = 0. (Hysop results).
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Figure 4.24: Close-up view of the y-profile of the mean streamwise velocity ux at
x = 0. (present results).

Figure 4.25: Close-up view of the y-profile of the mean streamwise velocity ux at
x = 0. (Hysop results).
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fully confident in our present results with respect to the reference code Hysop, a
simulation of the solid case with d = 1 (uncontrolled case) and of the porous case
with λ = 10 (controlled case) have been performed in Nek5000 and in Hysop using a
similar computational domain and a similar resolution; in Nek5000 the domain size
and the mesh remain the same as presented before and in Hysop the 2 simulations
are now performed in a domain D = [−10, 30]× [−10, 10] with 32 grid points along
the whole obstacle. The results between the two codes are compared in terms of
Strouhal numbers and of mean velocity profile of the streamwise velocity ux along
y-axis at x = 0. The Strouhal number is compared for the solid case d = 1 and for
the porous one at λ = 10. Table 4.2 shows these values. What we can see is that
the results obtained for both are in good agreement because for both cases we have
a relative error ε < 1%. The mean velocity profile is compared only for the solid
case d = 1. Figure 4.26 shows this comparison. Also in the case, the results for both
are very similar.

Case Present (Nek5000) Reference(Hysop)
d = 1.0, solid 0.1259 0.125
d = 1.0, λ = 10 0.1325 0.1315

Table 4.2: Comparison of Strouhal number values of the present work and reference.

Figure 4.26: Comparison of the y-profile of the mean streamwise velocity ux along
y-axis at x = 0 for the flow past a solid square cylinder.
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4.4.2 Linear stability analysis

As in the previous section, the linear stability is composed of two steps: base flow
computation and resolution of the eigenproblem. The simulation parameters to find
the base flow are always the same: χ = 0.2 and ω = 0.4. Corncerning the Arnoldi
algorithm one sets a Krylov subspace dimension k = 250 and a theshold for the
residual R = 10−6. The principal purpose of this section is to see how the neutral
curve is affected by the porous layer. We would like to answer the question ”Does
the increase of the dimensionless parameter λ inside the porous layer stabilize or
destabilize the flow ?”
The neutral curve for this study is shown in the figure 4.27 for λ = 10 and λ = 20
and for the solid case with d = 1 (λ = 0). What we can observe is that, with the

Figure 4.27: Neutral curve for different values of λ.

presence of a porous layer, the critical Reynolds number for the two controlled cases
λ = 10 and λ = 20 are increased compared to the one of the uncontrolled case
(solid case with d = 1). So effectively the purpose is achieved: thanks to the porous
coating we have delayed the bifurcation and so the flow is stabilized. However, if
it is true that on the one hand the occurrence of the bifurcation is delayed, on the
other hand, we see that the trend of the curves is not monotonous. It means that if
the Reynolds number is low, i.e. Re < 50, it is clear that for all the Reynolds in this
range the porous flow is more stable with respect to the non-porous one because
the growth rate of the instability is always lower (σporous < σnon−porous). When
we go beyond this range, so increasing the Reynolds number, the trend is reversed
since now the growth rate of the instability is greater than the non-porous one
(σporous > σnon−porous). This behavior could be explained by two arguments : first,
by increasing the Reynolds number, the non-linear effects become more important
with respect to the linear ones, and secondly the term that takes into account the
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porous flow (i.e. the Brinkman penalization term) is precisely a linear term. This
is due to the simplicity of the Brinkman model, that model three different medium
only varies the values of the dimensionless parameter λ. Finally, figure 4.28 shows
the most unstable mode for the two controlled cases at λ = 10 and λ = 20. We can
see clearly that the spatial distribution of the perturbation is unchanged respect
with the uncontrolled case 4.18.

(a) Velocity magnitude u for the flow past a porous square cylinder for λ = 10.

(b) Velocity magnitude u for the flow past a porous square cylinder for λ = 20.

Figure 4.28: Real part of the globally unstable modes associated with leading eigen-
value for the flow around a porous square cylinder at Re = 50.
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Chapter 5

Conclusion

In this work, linear stability analysis has been performed to predict the instability of
the porous flow around a square cylinder. All the simulations have been computed
with the spectral element code Nek 5000. Baseflow and eigenvalues problem has
been solved respectively with the selective frequency damping method and Arnoldi
algorithm. To model three different media the Brinkman penalization term has
been implemented in the code Nek5000. The first part has been dedicated to the
stability of the non-porous flow. For the validation, the results are compared with
the literature and also with internal validation, that confirms the non-linear behavior
of the flow in certain configurations. Maybe one limit of this part is linked to the
blockage ratio that is β ' 4.8%; this value, however, doesn’t alter the flow, so we
don’t have important blockage effects, but we could redo the study with a new β
value, for example β ' 2%, to reduce these effects even more. In the last part, has
been performed the stability for the porous flow. For the validation, the results have
been compared with the ones of the Hysop library, a validated code which also uses
the Brinkman approach to perform flow control using porous media.. For all the
flow configuration studied, the critical Reynolds number is inferred from the neutral
curve that shows the variation of the growth rate against the Reynolds number. In,
particular for the porous flow with λ = 10 and λ = 20 we have found a critical
Reynolds number Reλ=10 ' 46 and Reλ=20 ' 45 that are higher than critical value
of the non-porous flow. This proves that adding a porous zone around the obstacle
stabilizes the flow and delays the bifurcation. The most unstable mode is unchanged
respects to the non-porous flow.
This work should be a starting point to discover, for example how the position and
the thickness of the porous coatings on the surface affect the flow behavior. Another
interesting study, with the same spirit of this work, could be to see what happens at
the second bifurcation of the flow (three-dimensional transition flow regime) when
we add the porous zone on the square cylinder. In this configuration, the solid
obstacle could be also a cube or a sphere.
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