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Abstract. A remeshed Vortex method is proposed in this work to simulate three-
dimensional incompressible flows. The convection equation is solved on particles,
using a Vortex method, which are then remeshed on a Cartesian underlying grid. The
other differential operators involved in the governing incompressible Navier-Stokes
equations are discretized on the grid, through finite differences method or in spectral
space. In the present work, the redistribution of the particles on the Cartesian mesh
is performed using a directional splitting, allowing to save significant computational
efforts especially in the case of 3D flows. A coupling of this semi-Lagrangian method
with an immersed boundary method, namely the Brinkman penalization technique, is
proposed in this paper in order to efficiently take into account the presence of solid
and porous obstacles in the fluid flow and then to perform passive flow control us-
ing porous medium. This method, which combines the robustness of particle methods
and the flexibility of penalization method, is validated and exploited in the context of
different flow physics.
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1 Introduction

In recent years, improvements in computing enabled a large enhancement of numerical
simulations related to Computational Fluid Dynamics (CFD). These simulations allow to
predict the physical behavior of fluid flows. In the present study we particularly focus on
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incompressible Newtonian fluid flows past obstacles, which have been and are still sub-
ject to many investigations due to their close relation to aerodynamic efficiency. In that
sense, numerical simulations constitute a real economic issue when applied to engineer-
ing problems and are considered as interesting and reliable alternatives to wind-tunnel
experimentations.

Among the numerous numerical approaches used in CFD, Lagrangian methods, also
called particle methods, occupy an important place thanks to their intuitive and natural
description of the flow. Indeed, in Lagrangian approaches, the physical quantities in-
volved in the simulated problem are discretized onto a set of particles evolving spatially
in the domain according to the problem dynamics. The particles are therefore character-
ized by their position in the computational domain and the value of the physical quan-
tity they are carrying. Vortex methods [1] belong to this class of Lagrangian approaches
and will constitute the key point of the present work. In vortex methods, the particles
discretize the Navier-Stokes equations in their velocity (u) - vorticity (ω) formulation,
closed with a Poisson equation allowing to recover the velocity of the fluid flow from
the vorticity field. This formulation allows to directly point to the essence of vorticity
dynamics in incompressible flows, which is characterized by advection and diffusion as
well as stretching, which denotes the change of orientation. Another important feature of
Lagrangian vortex methods lies in their low numerical diffusion [1, 2] and their stability.

However, vortex methods exhibit difficulties inherent to particle methods, mostly re-
lated to the treatment of the boundary conditions and the distortion of the particle dis-
tribution, which manifests itself by the clustering or spreading of the flow elements in
high strain regions, thus implying the loss of convergence of the method. As demontrat-
ed first in [3] and later in [4], the convergence of Lagrangian vortex methods relies on
the particles overlapping : if the vorticity carried by a particle is spacially distributed on
a blob, that is to say on a disk of finite radius ε, then the convergence of vortex meth-
ods implies a strict relation between the particle spacing h and the blob radius ε, more
precisely one must ensure h=O(ε). The remeshing technique [5, 6] may be considered
as one of the most efficient and popular method to bypass the inherent problem of par-
ticle distribution distortion. It consists in periodically redistributing the particles onto
an underlying Cartesian grid, while the momentum equation is solved in a Lagrangian
framework, in order to ensure their overlapping and thus the convergence of the solution.
These remeshed vortex methods involve a Lagrangian framework for the advection and
stretching problems while handling also a fixed Cartesian grid. The presence of this grid
facilitates the prescription of the no-slip boundary conditions as well as the modeling of
the diffusive term and the resolution of the Poisson equation, using Eulerian schemes (e.g
finite-differences, spectral methods, ...), and ensures the particle overlapping condition.
In a computational point of view, the Cartesian grid also provides a simple and efficient
framework in terms of implementation and parallelization.

In this work, we present a remeshed vortex method coupled with an immersed bound-
ary technique in order to account for the presence of obstacles in the flow and to model
the boundary conditions. The immersed boundary method chosen here is the Brinkman
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penalization technique [7–9]. It relies on extending the fluid velocity inside the solid
body and to solve the flow equations with a penalization term, depending on the intrin-
sic permeability, to enforce rigid motion inside the solid. Beyond the advantages specific
to immersed boundary methods, the penalization approach allows to easily make the d-
ifference between the solid, fluid and also porous regions of the computational domain
by defining the value of the penalization parameter without prescribing any explicit con-
ditions at the interfaces. The simulation of 3D flows in a solid-porous-fluid domain is
of great interest here in the context of passive flow control. As highlighted in [10], the
presence of porous layers enables a damping of the flow-induced surface instabilities,
therefore modifying the flow behavior in the vicinity of the solid-porous-fluid interface.
Based on the works of [11, 12] (realized with a pure Eulerian approach), we propose in
this work an application of our semi-Lagrangian vortex method to passive flow control,
where the control device relies in a total or partial coating of a rear-view mirror-like ge-
ometry surface with a porous layer. Under optimal conditions related to the permeability
of the added porous layer and its position, the modifications of the flow induced by the
presence of such device may lead to a regularization of the wake and to a drag reduction.

The paper is organized as follows. In the first section we will give the governing e-
quations as well as the algorithm and the numerical schemes proposed to discretize the
problem. Section 3 is devoted to the numerical results. We will perform simulations for
two different types of 3D flows: we will first study the Taylor-Green vortex case and then
we will focus on flows past a solid hemisphere. For both flows, we perform a validation
and a convergence study of the proposed method. The section related to the numerical
results will end with an application to passive flow control past a hemispherical geom-
etry using porous media. Finally, the computational cost associated to the implemented
algorithm will be exposed in the last section of the paper.

2 Vortex penalization method

2.1 Governing equations

This study is based on the vorticity formulation of the incompressible Navier-Stokes e-
quations with constant density, called the Vorticity Transport Equations. In a domain D,
these equations read:

∂ω

∂t
+(u·∇)ω−(ω·∇)u=

1
Re

∆ω in D, (2.1)

∆u=−∇×ω in D, (2.2)

where ω, u and Re respectively denote the vorticity, the velocity and the Reynolds num-
ber. One can distinguish in equation (2.1) the advection term (u·∇)ω, the stretching ter-
m (ω·∇)u (which vanishes in 2D) and the diffusion term ∆ω/Re. The Poisson equation
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(2.2) is derived from the incompressibility condition∇·u=0 and allows to recover the ve-
locity field u from the vorticity field ω. This system of equations has to be complemented
by appropriate boundary conditions, both at solid boundaries and at the boundaries of
computational domain D. Let us notice that in 2D, the vorticity ω is a scalar field and
that the stretching term therefore vanishes.

The modeling of incompressible flow around an obstacle is realized in this work using
an immersed boundary method called the Brinkman penalization method [7,8]. With this
technique the fluid is assumed to be a porous medium of infinite permeability while the
solid obstacles immersed in the fluid are considered as media with zero permeability. A
flow evolving in such media may be modeled by the Brinkman-Navier-Stokes equations,
which stand for the whole computational domain and which contain an additional term
with respect to the Navier-Stokes equations, acting as a forcing term. In this work, the
penalization term is expressed in vorticity formulation. One therefore obtains the non-
dimensional Brinkman-Vorticity Transport equations, originally proposed by [13]:

∂ω

∂t
+(u·∇)ω−(ω·∇)u=∇×

(
λ χb(ub−u)

)
+

1
Re

∆ω in D, (2.3)

∆u=−∇×ω in D, (2.4)

where χb denotes the characteristic function that yields 0 in the fluid and 1 in the solid
body, ub indicates the rigid body velocity and λ = µΦH/ρku∞ is the non-dimensional
penalization parameter, with k the intrinsic permeability, µ the viscosity, Φ the porosity
of the porous material, H the characteristic dimension of the obstacle, ρ the fluid density
and u∞ =(ux∞ ,0,0) the main uniform fluid flow velocity field. In this study we set H =
ρ= ux∞ = 1 and the porosity Φ is close to 1 as imposed by the Brinkman equation [14].
Therefore λ essentially depends, in the inverse proportion, on the intrinsic permeability
k of the medium. We fix λ=0 in the fluid region and λ=108 in the solid region, which has
been shown in previous studies [8, 15] to be a value leading the velocity to numerically
converge to zero inside a solid region and at its boundaries.

The main advantage of the penalization method is that it needs neither the mesh
to fit the boundaries nor to explicitly specify no-slip boundary conditions, which is of
great interest in this context since the prescription of boundary conditions involving the
velocity field is known to be a difficult issue in the context of vortex methods.

2.2 Splitting algorithm

To solve the penalized vorticity equations (2.3)-(2.4), the problem is discretized onto par-
ticles that carry the vorticity field ω transported at the velocity u and the resolution of
the governing equations is based on a splitting algorithm [16–18], which consists at each
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Table 1: Time and space discretization methods used for the resolution of the viscous splitting algorithm
(equations (2.5) to (2.10)).

Equation Time discretization method Space discretization method
Poisson equation (2.5) - spectral method
Penalization (2.6) implicit Euler scheme 4th order centered FD
Stretching (2.7) RK3 scheme 4th order centered FD
Diffusion (2.8) implicit Euler scheme spectral method
Advection (2.9) RK2 scheme Λ4,2 remeshed vortex method
Adaptive time step (2.10) - 4th order centered FD (LCFL≤1)

time step in successively solving the following equations:

∆u=−∇×ω, (2.5)

∂ω

∂t
=∇×

(
λ χb(ub−u)

)
, (2.6)

∂ω

∂t
=(ω·∇)u, (2.7)

∂ω

∂t
=

1
Re

∆ω, (2.8)

∂ω

∂t
+(u·∇)ω=0, (2.9)

∆tadapt=
LCFL
‖∇u‖∞

. (2.10)

The discretization of each equation of the splitting algorithm is realized in this study
by using a semi-Lagrangian vortex method, called the remeshed vortex method. Table 1
gives the time and space discretization schemes used in this work to solve them. Figure
1 also shows a schematic representation of the overall algorithm.
The advection of vorticity field (equation (2.9)) is performed in a Lagrangian way using

POISSON EQUATION PENALIZATION STRETCHING

DIFFUSIONADVECTION

FFT Impl. Euler | FD RK3 | FD

Impl. Euler | FFTRK2 

REMESHING

Λp,r G

GGG

PP→G

tensorial pbms directionnal splitting

G

vs

on grid

P on particles

P→G from particles to grid

Legend :

input parameters

Figure 1: Sketch of the splitting algorithm.
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a vortex method : 

dxp

dt
=un

i (xp), ∀i∈{1,2,3},

xn+1
p = xn+1,

ωn+1
i =∑

p
ωn

pΛ4,2

(
xn+1

p −xi

h

)
.

(2.11)

Once the particle positions xp have been updated according to the flow velocity (cf. first
equation of system (2.11)), the vorticity carried by each particle is redistributed on the
neighbouring points of the underlying cartesian grid using a remeshing kernel of type
Λp,r [19] (cf. last equation of system (2.11)). The Λp,r remeshing kernels are piecewise
polynomial functions of regularity Cr, satisfying the conservation of the first p moments.
In this work, the particle advection and the remeshing procedure are performed us-
ing a directional splitting approach [20]. It consists in successively solving 1D convec-
tion/remeshing problems, direction by direction, as written in equations (2.11). As a
consequence, if the chosen kernel contains S points in its 1D-support, the number of op-
erations with the directional splitting method goes from O(S2) to O(2S) in 2D and from
O(S3) toO(3S) in 3D. This directional splitting therefore allows a significant reduction of
the computational efforts compared to the more traditional remeshing procedure based
on tensor product formulas.

The systematic remeshing of particles onto an Eulerian grid at each time step after
the advection stage, enables to ensure the overlapping of particles required for the con-
vergence of the method. Moreover the presence of the grid allows to discretize the other
equations using efficient and/or fast grid methods (finite differences and spectral method
based on FFT evaluations). In the present algorithm, equations (2.5) to (2.8) are solved on
the grid.

The Poisson equation (2.5) is first resolved in the Fourier space according to the fol-
lowing expression :

û(ξ)=
1
|ξ|2 (∇̂×ω). (2.12)

The penalization of the vorticity field (equation (2.6)) naturally satisfies the desired
boundary conditions by prescribing the correct values of λ in the different regions of
the domain (solid-porous-fluid), as explained in the previous section. In this paper we
only consider static immersed obstacles, therefore the velocity of the body is ub =0. The
conservative formulation of the discrete penalized vorticity writes:

ωn+1=ωn+∇×
(
−λχb∆t un

1+λχb∆t

)
, (2.13)

where un denotes the velocity recovered from (2.12) after performing an inverse Fourier
transform. The treatment of this penalization equation is realized using a 4th order cen-
tered finite-differences scheme for the discretization of the curl operator. We notice that
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the velocity field is not directly penalized in this algorithm. The velocity penalization is
implicitly realized through the resolution of the Poisson problem (2.5). With the penal-
ization approach, the treatment of boundary conditions is therefore efficient in terms of
modeling (one has a unique equation available in the whole computational domain), of
computational cost (we refer the lecturer to the last section of this paper dedicated to the
computational resources of the overall method) and also in terms of implementation and
parallelization efforts.

The stretching problem (2.7) is considered here in its conservative formulation :

∂ω

∂t
=div(ω : u), (2.14)

where div(ω:u):=(ω·∇)u+u div(ω), and a solenoidal reprojection based on the Helmholtz
decomposition of the vorticity field is done in the Fourier space every timestep in order
to ensure a divergence-free vorticity field (div(ω)=0). The time integration scheme cho-
sen here to discretize this equation is the 3rd order Runge-Kutta TVD (Total Variation
Diminishing, i.e. non extra oscillations) scheme. With this time discretization, the veloc-
ity field involved in the divergence operator is not modified. The divergence operator is
discretized through a 4th order centered finite-diffrences scheme on the grid.

Concerning the diffusion equation (2.8), it is discretized in time using an implicit 1st

order Euler scheme:

ωn+1−ωn

∆t
=

1
Re

∆ωn+1, (2.15)

⇐⇒ ∆ωn+1− Re
∆t

ωn+1=−Re
∆t

ωn. (2.16)

This equation is solved in the Fourier space, where the solution is given by

ω̂n+1=
Re
∆t

|ξ|2+ Re
∆t

ω̂n. (2.17)

An adaptive time-step ∆tadapt is computed at the end of the fractionnal step algorithm
(2.10). It is based on the non-linear stability of the advection/remeshing scheme in vortex
methods :

∆tadv≤
LCFL
‖∇u‖∞

, (2.18)

where the LCFL denotes the Lagragian CLF [21]. This number must satisfy LCFL≤1 [19].
From a physical point of view, this stability condition imposes that particles trajectories
do not cross. As the time step defined by this stability condition is not constrained by
the grid size or the distance between the particles but only by the flow strain, it often
provides larger time steps compared to Eulerian schemes, based on CFL conditions.
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Concerning far-field boundary conditions, the present study uses a bounded plane-
parallel computational domain to solve the Brinkman vorticity transport equations (2.3)-
(2.4). Artificial boundary conditions therefore need to be prescribed at the box walls. In
the present work, we prescribe periodic boundary conditions on the domain walls. This
choice allows us to use a Fast Fourier Transform (FFT) method to efficiently solve the
Poisson equation ∆u=−∇×ω. As a consequence, handling periodic boundary condi-
tions implies special treatments on the flow fields in order to recover the desired uniform
flow at the inlet: on one hand the eddies coming periodically from the outlet are discard-
ed with a smooth absorption and on the other hand the velocity flux is corrected at the
inlet so as to recover the desired incoming uniform flow. More details about this method
may be found in [22].

3 Numerical results

In order to verify the convergence, accuracy and efficiency of the method, we present in
this section a numerical validation study based on Direct Numerical Simulations (DNS).
These simulations concern two different types of flows. First we analyze the perfor-
mances of the method in the case of the Taylor-Green vortex benchmark, an unbounded
periodic flow commonly used to study the capability of a numerical method to handle
transition to turbulence. The second part of this section is related to bluff body flows at
transitional and subcritical regimes in order to test the ability of the present penalization-
vortex method to simulate flows around immersed obstacles. We will more precisely
focus on flow around a 3D hemisphere ; some validation results will be given and an
application to passive flow control using porous media will also be presented.

3.1 Taylor-Green vortex

The Taylor-Green vortex is an analytical periodic solution of the incompressible Navier-
Stokes equations. It describes the non-linear interaction of multiscales eddies under the
influence of vortex stretching and their final decay. It is a classical benchmark used as
an initial condition for numerical methods to study flow problems related to transition
to turbulence. This bencharmark has already been tested with success in the context
of a remeshed vortex method by van Rees et al. [17]. Since this method was different
from the present one in the sense of the remeshing procedure (tensorial versus directional
approach in our case), we test hereafter the validity of the method proposed in this work.

We consider the flow that evolves in a periodic cubic box of side length L=2π and de-
velops from the following initial condition, which satisfies the divergence-free constraint:

ux(x,t=0)=sin(x)cos(y)cos(z),
uy(x,t=0)=−cos(x)sin(y)cos(z), (3.1)
uz(x,t=0)=0.
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The Reynolds number of the flow is defined by Re=1/ν. In the present study it is set to
Re= 1600. At such regime, the minimum number of grid cells required per direction in
DNS is approximatly given by

nx≈
l0
η
=Re3/4∼253, (3.2)

where l0=1 denotes the integral length scale, that is to say the scale of the largest eddies,

and where η =
(
ν3l0/u3

0
) 1

4 corresponds to the Kolmogorov length scale, that is to say
the scale of the smallest eddies, with u0 the caracteristic velocity set to 1. Therefore,
according to this estimation, we expect reliable results from a 2533 total grid resolution.
Concerning the numerical time step, the simulations performed in this work are based
on an adaptative time step defined by equation (2.10) with a LCFL value set to 0.125.

Let us first describe the physics of the flow at Re=1600. The different stages explained
hereafter are illustrated by Figures 2a and 3 obtained from simulations performed with
the present method taking nx = ny = nz = 256 and LCFL = 0.125 for spacial and time
discretization respectively, and respectively depicting the kinetic energy dissipation rate
ε=−dE/dt and the magnitude of the 3D vorticity field. After a short laminar stage (Figure
3a), the vortices roll-up and start to interact with each others under the influence of the
vortex stretching, leading to an important change in their topology with lengthening and
thinning of the vortical structures (Figure 3b). It corresponds to the beginning of the
energy cascade. Then the viscous stage arises and regions of high energy dissipation are
formed until the maximum of dissipation is reached at T≈9 (Figure 3c) and kinetic energy
is dissipated into heat under the action of molecular viscosity. After the dissipation peak,
the coherent eddies are deformed and destroyed leading to the developed turbulent flow,
which starts to mix and decay from T≈12 (Figure 3d). The similar analysis given in [23]
may be cited as a first qualitative validation of the present results.

Let us now focus on the adativity of the time step ∆tadapt according to the flow physic-
s. Figure 2b gives the evolution of the adaptative time step, which depends on the infinite
norm of the velocity gradient, ‖∇u‖∞ (cf. equation (2.10)). Let us consider the value of
∆tadapt obtained at a given time t with a given and fixed LCFL number (LCFL = 0.125
here), then one can define the equivalent CFL number as CFLeq=∆tadapt‖u‖∞/∆x, where
‖u‖∞ denotes the infinite norm of the velocity field. We can clearly see on Figure 2b
that rather large time steps are taken at the beginning of the simulation (where ‖u‖∞∼1)
with an equivalent CFL close to 0.5, whereas at T=8, when the peak of energy dissipation
is almost reached and the multiscale structures interact with each others, the adapative
time step decreases to its minimum value which is equivalent to CFLeq =0.2. At the end
of the simulation, the equivalent CFL is approximately equal to 0.37. The formulation
(2.10) of the adaptive time-step therefore ensures at any time the stability of the method
and the precision of the solution while enabling fast computations when the flow strain
is relatively low.
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Figure 2: Taylor-Green vortex at Re= 1600. (a) Time evolution of the kinetic energy dissipation rate ε. (b)
Evolution of adaptative time step ∆t.

(a) t=3.5 (b) t=7.5 (c) t=9.5 (d) t=17.5

Figure 3: Instantaneous magnitude of vorticity field |ω| at different stages of the Taylor-Green vortex simulation
at Re=1600.

3.1.1 Grid convergence study

In the present grid convergence study the simulations are performed on the following
uniform Cartesian grids:

nx×ny×nz =643, 1283, 2563, 5123.

The results are analyzed in terms of enstrophy evolution, where the enstrophy is the
integral quantity defined as:

Z=
1
L3

∫
D

ω2 dx=ν−1ε. (3.3)

They are compared in Figure 4 to the convergence study performed by Jammy et al. us-
ing an explicit finite difference solver [24]. We can notice that both methods converge
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with a 2563 resolution, which corresponds to the minimum number of cells required in
the domain to correctly solve the smallest scales, as explained previously. One can also
emphasize an interesting feature of the vortex methods which relies on the fact that even
with unconverged grids (e.g. 643), the correct maximum value of enstrophy at T≈ 9 is
captured by the present method (Figure 4a), which is not the case with a finite difference
based method (Figure 4b).

(a) (b)

Figure 4: Grid convergence study in terms of enstrophy evolution. (a) Present method. (b) Results obtained
by [24] with the OpenSBLI solver, based on a finite difference algorithm.

3.1.2 Validation

Based on the results of the previous section, we consider the converged grid nx×ny×nz=
5123 for the simulations performed in this validation study. First, we compare our results
with [24] in terms of kinetic energy decay and integral enstrophy. As can be seen on
Figure 5, the two solutions are in good agreement, especially until T≈9, when the peak
of energy dissipation is reached. A discrepancy between the two results is then observed
during the flow mixing stage, showing a slightly more antidiffusive behavior provided
by the present vortex method compared to the finite difference method of [24] reported
here or the spectral methods evoqued in [17, 25].

Our results are now qualitatively analyzed in terms of vortical structures in the flow.
Figure 6a shows the norm of vorticity field |ω| in the x=0 plane at T=8, obtained with the
present method using a 5123 resolution. The vorticity isocontours of the eddy depicted
on the close-up view are given below, in Figure 6b, and are compared to the one found
in [17] using also a semi-Lagrangian vortex method at the same resolution of 5123 (see
Figures 6c and 6d). The same comparisons are made in Figure 7 for vortical structures
obtained at T=9, when the maximum of energy dissipation occurs. These instantaneous
snapshots and isocontours correspond to times when the most complex vortical eddies
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(a) (b)

Figure 5: Comparison of the present method results (solid lines) with the one based on finite difference method
in [24] (dashed lines). (a) Time evolution of the decay of kinetic energy. (b) Time evolution of integral
enstrophy.

are formed in the flow.
As can be noticed, our results and the one of [17] coincide rather well, both at T = 8

and T=9. The global size of the eddy and the thin elongated parts on the right are almost
similar for both methods. A noticeable discrepancy is however noticed concerning the
shape of the ”eye” of the vortical structure, which is related to the slight overprediction
of the energy dissipation of the present method (cf. Figure 5). However, no spurious
oscillations are observed in the present vorticity isocontours.

3.2 Flow past a hemisphere

In this section, the present remeshed vortex method is validated in the context of three
dimensional flows past solid bluff bodies. More precisely we consider the case of a 3D
flow past a hemisphere whose bluff surface is facing upstream and flat surface is ori-
ented downstream [26]. Due to the presence of a flat back wall with sharp edges, the
flow past a hemisphere is a steeper problem compared to the flow past a sphere and is
therefore challenging from a numerical point of view. Our purpose in this section is to
measure to which extent the penalization method can handle this type of singularity in
three dimensions, at transitional Reynolds numbers.

3.2.1 Numerical setup

In the sequel, the simulations are performed in a 3D computational box D=[−2, 8.24]×
[−2.56,2.56]×[−2.56, 2.56], meshed by an uniform Cartesian grid. The hemisphere is
centered at the origin of the computational domain. The non-dimensional diameter of the
obstacle is set to d=1 and the free stream velocity is equal to u∞=(ux∞,uy∞,uz∞)=(1,0,0).
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(a) Global view (left) and close up view (right) of |ω| at T = 8 in
the x=0 plane using the present method with a 5123 resolution.

(b) Present method (c) Results obtained by [17] (d) Superimposition of present re-
sult and [17]

Figure 6: Instantaneous magnitude of vorticity field |ω| at T=8 in the x=0 plane with a 5123 resolution. In
subfigures (b), (c) and (d) the isocontours of |ω| are plotted for values of 1, 5, 10, 20, 30.

As mentionned previously, the bluff surface of the hemisphere faces the upstream flow
and the flat one is oriented downstream. As in [27], a perturbation is addressed to the
uniform upstream flow between the non-dimensional time T = 3 and T = 4, in order to
trigger the instability. This perturbation is applied on the y component of the velocity and
is expressed as uy∞=sin(π(T−3)). The time step is defined according to equation (2.10),
with LCFL = 0.125. It is approximately equal to ∆tadapt≈ 0.011 all along the simulation.
The penalization parameter is set to λ=108 in the solid hemisphere.

The results of this section will be interpreted in terms of different physical quatitites :
the Strouhal number St= f d/u∞, the enstrophy Z=

∫
D |ω|

2 dx and the aerodynamic forces,
namely the drag coefficient CD, the vertical lift coefficient CL and the side lift coefficient
CS :

CD =
2Fx

ρu2
∞A

, CL =
2Fy

ρu2
∞A

, CS =
2Fz

ρu2
∞A

, (3.4)

where A corresponds to the surface area of the circular back face of the hemisphere.
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(a) Global view (left) and close up view (right) of |ω| at T = 9 in
the x=0 plane using the present method with a 5123 resolution.

(b) Present method (c) Results obtained by [17] (d) Superimposition of present re-
sult and [17]

Figure 7: Instantaneous magnitude of vorticity field |ω| at T=9 in the x=0 plane with a 5123 resolution. In
subfigures (b), (c) and (d) the isocontours of |ω| are plotted for values of 1, 5, 10, 20, 30.

Concerning the aerodynamic forces Fx,Fy and Fz exerced on the hemisphere and involved
in the above expressions, they are computed in the present study by integrating in the
solid body B the difference between the flow velocity u and the numerical penalized
velocity uλ =

u
1+λ∆t

[28] :

F=
d
dt

∫
B
(u−uλ) dx. (3.5)

The evaluation of this force is performed right after the resolution of the penalization
equation (2.6) in the splitting algorithm described in Section 2.2.

3.2.2 Grid convergence study

A grid convergence study is performed for flow past a 3D hemisphere at Re = 300. It
involves four mesh sizes h=0.08, h=0.04, h=0.02 and h=0.01, which correspond to global
resolutions ranging from nx×ny×nz =128×64×64 to 1024×512×512 in the domain D.
Convergence orders are determined by computing the L1, L2 and L∞ norms of the error of
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Table 2: Convergence study for flow past a hemisphere at Re=300. C̄D and Z̄ respectively denote the mean
values of drag coefficient and enstrophy.

Re=300
Grid ¯cD Z̄
h=0.08 (nx×ny×nz =128×64×64) 0.787 73.4
h=0.04 (nx×ny×nz =256×128×128) 0.725 73.0
h=0.02 (nx×ny×nz =512×256×256) 0.721 73.3
h=0.01 (nx×ny×nz =1024×512×512) 0.725 74.0

two different flow quantities, namely the enstrophy Z and the drag coefficient CD, with
respect to the best resolved case (h=0.01):

e(t)= || qbest resolved(t)−q(t) ||, (3.6)

where the quantity q either denotes the drag coefficient CD or the enstrophy Z.
The order of convergence for the drag coefficient is found to be 1.80 for L1, 2.23 for

L2, 1.48 for L∞ and 0.95 for L1, 1.49 for L2, 1.23 for L∞ concerning the enstrophy. They are
complemented by Table 2, giving the converged mean values of the two flow quantities
at Re= 300. On the basis of these results one may consider that the grid convergence is
roughly obtained by setting h=0.04.

3.2.3 Validation

To our knowledge there are only few experimental and numerical results dedicated to
the problem of flow past a 3D hemisphere. This section is based on the study carried out
by Kim & Choi [26], who investigated in detail the behavior of flows past a hemisphere
at different low and transitional Reynolds numbers, ranging from 100 to 300.

Flow past a hemisphere at Re=200 and 300

In this validation study we will focus on Reynolds numbers 200 and 300, correspond-
ing to different unsteady flow behaviors. These Reynolds numbers are also studied in
detail in [26]. Based on the grid convergence study reported in Table 2, the simula-
tions presented in this validation section are performed with a mesh resolution set to
nx×ny×nz =512×256×256, in order to better capture the boundary layer.

The flow at Re = 200 is first considered. Table 3 gives the mean values of the force
coefficients at Re= 200 and one can notice a very good agreement between the present
results and those of [26]. Concerning the Strouhal number, one can see in our case and
in the reference results that the Strouhal based on the lift is half the one based on the
drag. Finally, we focus on the side lift coefficient CS. At Re=200 the time average of this
coefficient is not zero, which corroborates the fact that the flow does not maintain the
planar-symmetry. This statement is confirmed by Figure 8 depicting the vorticity norm
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XY plane

XZ plane

T=100 T=200

Figure 8: Instantaneous 3D vortical structures with isocontour |ω|=0.8 for flow past a hemisphere at Re=200.

|ω| at two different times, where one can see that the wake is not symmetric in the plane
XZ at this Reynolds number.

At Re= 300, the flow has a more complex behavior. The vorticity norm reported in
Figure 9 highlights the absence of any planar-symmetry. The same behavior is observed
in [26]. On the other hand, Table 3 reveals that, at this regime, there co-exist two distinc-
t values of the Strouhal number based on the power spectrum of the drag. The lower
frequency (Stdrag1=0.04) is due to the large-scale instability of the wake, while the high-
er frequency (Stdrag2 = 0.270) is attributed to the small-scale instabilities caused by the
separation of the shear layer. The Stdrag2 value is still approximately equal to twice the
dominant frequency of the lift (Stlift=0.135). One can also remark in Table 3 that the time
average lift coefficient C̄L is approximately zero, like for Re= 200. Indee d, the vortices
shed alternatively with the same strength in the flow direction (cf. Figure 8 and 9 in XY
plane), leading to C̄L≈0.

Flow past a hemisphere at Re=1000

In our last investigation, we aim to extend our study to non-laminar flows past hemi-
sphere. To our knowledge, no study has been carried out experimentally or numerically
at such regimes, and more generally at a Reynolds number larger than Re = 300. The
simulation presented here is performed at Re = 1000, which is expected to belong to a

Table 3: Comparison of mean drag and lift coefficients as well as Strouhal numbers for flow past a hemisphere
at Re=200 and 300.

Re=200 ¯cD c̄L c̄S Stlift Stdrag
Kim & Choi [26] 0.790 0.0 ± 0.024 0.049 0.128 0.256
Present 0.805 0.003 ± 0.025 0.043 0.129 0.257
Re=300 ¯cD c̄L c̄S Stlift Stdrag1 Stdrag2
Kim & Choi [26] 0.715 0.0 ± 0.062 0.0 0.135 0.04 0.270
Present 0.729 -0.002 ± 0.063 -0.0016 0.134 0.04 0.270



C. Mimeau, I. Mortazavi and G.-H. Cottet / J. Math. Study, 52 (2019), pp. 277-298 293

XY plane

XZ plane

T=100 T=200

Figure 9: Instantaneous 3D vortical structures with isocontour |ω|=0.8 for flow past a hemisphere at Re=300.
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Figure 10: Time evolution of the aerodynamic coefficients for flow past a hemisphere at Re=1000.

range of transitional Reynolds numbers responsible for the apparition of a secondary
instability in the shear wake, propagating in the wake. On the basis of the grid re-
finement study reported in Table 2, we have set for this case the mesh resolution to
nx×ny×nz = 1024×512×512. The results indicate that the flow past a hemisphere at
Re=1000 is unsteady, non-periodic and asymmetric. The time history of the force coeffi-
cients is reported in Figure 10. It indeed shows that from T'55 the wake becomes chaotic
and is characterized by important and non-periodic variations of the side lift coefficient
CS.

Figure 11 depicts the isocontours of the streamwise vorticity past a hemisphere in
the XZ plane at different times. One can verify in particular that, as suggested by the
evolution of the side lift coefficient CS (see Figure 10), the wake looses its symmetry
between T=40 and T=60. The delayed asymmetric behavior can be explained by the flat
back wall of the hemisphere and seems triggered by the insight of secondary instabilities
in the shedding shear areas.
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T=20

T=40

T=60

T=80

Figure 11: Isocontours of ωx in the XZ plane for flow past a hemisphere at Re=1000.

3.3 Passive flow control using porous media

The present version of vortex penalization method can be used to efficiently perform flow
simulations in a solid-fluid-porous domain. Indeed, the Brinkman-Navier-Stokes equa-
tions (2.3)-(2.4) appears to be very convenient to model the flow in complex media thanks
to the dimensionless penalization factor λ, whose value allows to distinguish between the
different materials. Setting the λ parameter to an intermediate value, reasonably chosen
between the two extreme values λ = 0 (fluid domain) and λ=108 (solid domain), allows
to model a porous medium in which the flow has a non-zero Darcy velocity.

Here, the simulation of flows in solid-fluid-porous media is applied to a 3D passive
flow control study consisting in covering the surface of a side-view mirror geometry
(modeled by a hemisphere) with a porous coating in order to change the flow properties
at the boundary and to achieve drag reduction. Figure 12 shows the different geometri-
cal configurations considered in this flow control study. The simulations are performed
at Re= 1000 using the same parameters as the one given in Section 3.2.3. As Figure 13
shows, the porous ring inlay configuration provides better results in terms of flow control
(important decrease of vorticity values in the wake (Figure 13a) and a drag force reduc-
tion of 16% (Figure 13b) compared to the homogeneous porous layer. This outcome may
be explained by the position of the porous zone on the hemisphere surface: indeed, in
the ring inlay configuration, the permeable region is only located in the vicinity of the
separation points, preventing from the resistance phenomenon experienced by the fluid
in the front part of the hemisphere in the porous layer case.

4 Computational resources

In this last section, we focus on the computational cost of the proposed method. The
direct numerical simulations presented in this paper were performed on bi-Xeon Sandy-
Bridge cores. Table 4 gives the numerical setup, the resources and the CPU time-to-
solution for the 3D flows around a hemisphere analyzed in this work. Let us remind



C. Mimeau, I. Mortazavi and G.-H. Cottet / J. Math. Study, 52 (2019), pp. 277-298 295

τ τ τ

τ τ τ

side view top view rear back view

case 1
porous layer

case 0
uncontrolled 

case 2
ring inlay

porous layer
con�guration

ring inlay
con�guration

λ solid 

λ porous =1
=108

Figure 12: Flow control geometrical configurations. Case 0 depicts the uncontrolled case and cases 1 and 2
correspond to different porous layer configurations.

(a) Global view (left) and close up view (right) of |ω| at T = 9 in the
x=0 plane using the present method with a 5123 resolution.

(b) Present method

Figure 13: Passive control using porous media around a 3D hemisphere (simplified side-view mirror geometry)
at Re= 1000. The flow past an uncontrolled hemisphere (case 0) is compared to the flow past a hemisphere
covered with a porous layer (case 1) or a porous ring inlay (case 2). For case 1 and case 2, the penalization
parameter λ is equal to 1 (high permeability) inside the porous zone and the thickness of the porous coating is
equal to 10%d=0.1.(a) Comparison of the 3D instantaneous (top) and 2D mean (bottom) vorticity magnitude.
(b) Comparison of the drag force Fx.

that the simulations presented in this paper were realized in the domain D= [2, 8.24]×
[−2.56, 2.56]×[−2.56, 2.56]. The tend values reported in the table correspond to the
non-dimensional final time of the simulations. ∆tadapt(mean) denotes the mean of the
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Table 4: Parameter settings and CPU time costs for simulations of incompressible flows past a 3D hemisphere
at Re=300 and Re=1000.

Hemisphere Re=300 Hemisphere Re=1000
Resolution 512×2562 (∼ 33M pts) 1024×5122 (∼ 268M pts)

tend 450 112
N time steps 42590 22352

∆tadapt (mean) 1.0 10−2 5.0 10−3

N cores 32 64
CPU time 4 days 10 days

non-dimensional adaptative time step. This mean value is calculated on the time range
[t̃, tend], where t̃ denotes the time from which the flow regime is established.

The CPU times-to-solution shown in this table correspond to a CPU time of about 40
seconds per time step on 64 cores for the high resolution N=1024×5122, and of about 8
seconds per time step on 32 cores for the lower resolution N=512×2562. This indicates
a weak scalability in this range of resolutions around 80%.

Figure 14 gives the percentage of the different stages implied in the resolution of the
3D Brinkman vorticity transport equations (2.3)-(2.4), in one simulation time step for the
execution on 1 core. In particular, one can notice that the FFT grid-based Poisson solver
only represents 5% of the total CPU cost of one time step.

Figure 14: Percentage of the different stages implied in the resolution of the 3D penalized Vorticity-Transport-
Equations (2.3)-(2.4), in one simulation time step for the execution on 1 core.

5 Conclusion

In this work, a remeshed vortex method has been employed to simulate different types of
three-dimensional flows. One original feature of this vortex method relies in the remesh-
ing process. The particle redistribution is indeed performed direction by direction, which



C. Mimeau, I. Mortazavi and G.-H. Cottet / J. Math. Study, 52 (2019), pp. 277-298 297

allows significant computational savings in 3D compared to classical tensorial approach-
es.

In the case of the Taylor-Green Vortex unbounded periodic flow, in which the ad-
vection and stretching phenomena are globally dominant, the low diffusivity inherent to
particle methods allows to provide results close to the physics even using coarse mesh-
es. Concerning flows past bluff bodies, we shown in this study that the present method
combines the simplicity of the penalization technique and the robustness of remeshed
particle methods. The penalization approach allows the modelling of solid-porous-fluid
media thanks to the presence of the penalization parameter in the governing equation-
s, without prescribing any explicit conditions at the obstacle’s boundaries. This feature
allowed us to apply the present method to an aerodynamic flow control problem, based
on the use of porous coatings located at strategic regions on the projected surface of the
body.

For both flow types, the validation studies exhibited a good agreement with refer-
ences in litterature. These numerical results prove the ability of the present method to
correctly account for the expected behavior of the flow at transitional or highly transi-
tional regimes and to accurately handle immersed geometries.

A natural extension of this work concerns the derivation of a turbulence model so as
to tackle simulations at higher Reynolds numbers. The challenge will then be to reach a
high degree of adaptivity while keeping the simplicity and associated good scalability of
the penalized remeshed particle methods.
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